Publications by authors named "Zengjie Fan"

Compared to liquid electrolytes, gel polymer electrolytes (GPEs) offer enhanced safety and represent an up-and-coming option for high-energy-density lithium metal batteries (LMBs). However, several challenges hindered the practical application of GPEs for LMBs, such as low ionic conductivity at room temperature, decomposition at high voltage, and poor interfacial compatibility with lithium anode. In this study, a non-flammable fluorinated GPE was synthesized using 2,2,2-trifluoroethyl acrylate (TFEA) and ethoxylated trimethylolpropane triacrylate (ETPTA) as precursor materials, with succinonitrile (SN) incorporated as a plasticizer and a dual-salt system of lithium bis(trifluoro-methane) sulfonimide and lithium difluoroxalate borate.

View Article and Find Full Text PDF

Repairing osteochondral (OC) defect presents a significant challenge due to the intricate structural requirements and the unpredictable differentiation pathways of bone marrow mesenchymal stem cells (BMSCs). To address this challenge, a novel biomimetic OC hydrogel scaffold is developed that features a structure of soft and hard components. This scaffold incorporates bilayer metal-organic frameworks (MOFs), specifically ZIF-67 in the upper layer and ZIF-8 in the lower layer, achieved through an in situ printing process.

View Article and Find Full Text PDF

Lithium metal batteries (LMBs) possess a theoretical energy density far surpassing that of commercial lithium-ion batteries (LIBs), positioning them as one of the most promising next-generation energy storage systems. Modifying separators with composite coatings comprising oxide solid-state electrolyte (SSE) particles and polymers can improve the cycling stability and safety of LMBs. However, exposure to air forms LiCO on oxide SSE particles, diminishing their ion flux regulation at the electrode/electrolyte interface.

View Article and Find Full Text PDF

Repairing larger defects (>5 mm) in peripheral nerve injuries (PNIs) remains a significant challenge when using traditional artificial nerve guidance conduits (NGCs). A novel approach that combines 4D printing technology with poly(L-lactide-co-trimethylene carbonate) (PLATMC) and TiCT MXene nanosheets is proposed, thereby imparting shape memory properties to the NGCs. Upon body temperature activation, the printed sheet-like structure can quickly self-roll into a conduit-like structure, enabling optimal wrapping around nerve stumps.

View Article and Find Full Text PDF

Muscle atrophy resulting from peripheral nerve injury (PNI) poses a threat to a patient's mobility and sensitivity. However, an effective method to inhibit muscle atrophy following PNI remains elusive. Drawing inspiration from the sea cucumber, we have integrated microneedles (MNs) and microchannel technology into nerve guidance conduits (NGCs) to develop bionic microneedle NGCs (MNGCs) that emulate the structure and piezoelectric function of sea cucumbers.

View Article and Find Full Text PDF

Thick electrodes with high mass loading and increased content of active materials are critical for achieving higher energy density in contemporary lithium-ion batteries (LIBs). Nonetheless, producing thick electrodes through the commonly used slurry coating technology remains a formidable challenge. In this study, we have addressed this challenge by developing a dry electrode technology by using ultralong multiwalled carbon nanotubes (MWCNT) as a conductive additive and secondary binder.

View Article and Find Full Text PDF

During the process of wound healing, the stimulation of inflammatory factors often leads to abnormal proliferation of blood vessels and collagen, ultimately resulting in scar formation. To address this challenge, we fabricate a novel dermal extracellular matrix (DECM) hydrogel scaffold loaded with ginsenoside Rg3 (Rg3) using 3D printing technology. Mesoporous silica nanoparticles (MSNs) are introduced into the system to encase the Rg3 to control its release rate and enhance its bioavailability.

View Article and Find Full Text PDF

Bone defects are a common complication of bone diseases, which often affect the quality of life and mental health of patients. The use of biomimetic bone scaffolds loaded with bioactive substances has become a focal point in the research on bone defect repair. In this study, composite scaffolds resembling bone tissue were created using nacre powder (NP) and sodium alginate (SA) through 3D printing.

View Article and Find Full Text PDF

As a typical chronic inflammatory joint disease with swelling and pain syndromes, rheumatoid arthritis (RA) is closely related to articular lubrication deficiency and excessive proinflammatory cytokines in its progression and pathogenesis. Herein, inspired by the dual effects of joint lubrication improvement and anti-inflammation to treat RA, two novel potential therapeutic nanoagents have been developed rationally by employing herbal medicine-derived carbon quantum dots (CQDs), i.e.

View Article and Find Full Text PDF

Peripheral nerve defects, particularly those of a larger size, pose a significant challenge in clinical practice due to their limited regenerative capacity. To tackle this challenge, an advanced self-powered enzyme-linked microneedle (MN) nerve conduit is designed and fabricated. This innovative conduit is composed of anodic and cathodic MN arrays, which contain glucose oxidase (GOx) and horseradish peroxidase (HRP) encapsulated in ZIF-8 nanoparticles, respectively.

View Article and Find Full Text PDF

Diabetic wounds with complex pathological features and a difficult-to-heal nature remain a formidable challenge. To address this challenge, we design and fabricate a self-powered enzyme-linked microneedle (MN) patch composed of anode and cathode MN arrays, which respectively contain glucose oxidase (GOx) and horseradish peroxidase (HRP) encapsulated in ZIF-8 nanoparticles. The enzymatic cascade reaction in the MN patch can effectively reduce local hyperglycemia in diabetic wounds while generating stable microcurrents to promote rapid healing of diabetic wounds.

View Article and Find Full Text PDF

Achieving all-solid-state lithium-based batteries with high energy densities requires lightweight and ultrathin solid-state electrolytes (SSEs) with high Li conductivity, but this still poses significant challenges. Herein, we designed a robust and mechanically flexible SSE (denoted BC-PEO/LiTFSI) by using an environmentally friendly and low-cost approach that involves bacterial cellulose (BC) as a three-dimensional (3D) rigid backbone. In this design, BC-PEO/LiTFSI is tightly integrated and polymerized through intermolecular hydrogen bonding, and the rich oxygen-containing functional groups from the BC filler also provide the active site for Li hopping transport.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic inflammatory immune and lubrication dysfunction disease that causes great damage to the joints. Herein, inspired by the unique biochemistry structure and excellent hydration of chondroitin sulfate (CHI) existing in joint system, one kind of novel polysaccharide nanoparticle lubricant, that is chitosan nanoparticles (CS NPs) grafting CHI (CS-CHI), is synthesized by one-step surface chemistry reaction. CHI with negative charges can form hydration layers on the surface of CS NPs, thus improving the lubricity of nanoparticles.

View Article and Find Full Text PDF

The lubrication deficiency in joints is a major cause of osteoarthritis. One of the most commonly used treatment means is to inject artificial lubricants, but there is a potential risk of infection during the injection process. Therefore, developing artificial lubricants with dual functions of friction-reduction and antibacterial is urgent.

View Article and Find Full Text PDF

All-solid-state batteries (ASSBs) with alloy anodes are expected to achieve high energy density and safety. However, the stability of alloy anodes is largely impeded by their large volume changes during cycling and poor interfacial stability against solid-state electrolytes. Here, a mechanically prelithiation aluminum foil (MP-Al-H) is used as an anode to construct high-performance ASSBs with sulfide electrolyte.

View Article and Find Full Text PDF

The development of novel wound dressings with highly effective antibacterial and accelerating wound healing properties has become the focus of current research. In this study, a novel and injectable lactoferrin (LF)/lithium magnesium silicate hydrogel (LMSH) was first synthesized through a simple electrostatic interaction method. The physical and biological properties are systematically characterized.

View Article and Find Full Text PDF

Objective: The purpose of this study was to synthesize boron nitride nanosheets modified with zinc oxide nanoparticles (BNNSs/ZnO) and incorporate them as a novel inorganic filler to get an antibacterial dental resin composite.

Methods: The BNNSs/ZnO nanocomposites were synthesized via the hydrothermal method and characterized by Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectrometer (EDS), X-ray Diffraction (XRD) and Fourier Transform-Infrared (FTIR) Spectroscopy. The BNNSs/ZnO or BNNSs were added into the experimental dental composite with different proportions, respectively.

View Article and Find Full Text PDF

Metal single-atom materials have attracted tremendous attention in the research field of lithium-sulfur (Li-S) batteries because they can effectively improve the reaction kinetics of sulfur cathodes. However, it is still difficult to determine the best metal single-atom catalyst for Li-S batteries, due to the lack of a unified measurement and evaluation method. Herein, a series of metal single-atom- and nitrogen-doped graphene materials (M-NG, M = Fe, Co, Ni, Ir, Ru) have been prepared as the catalysts for promoting the reaction kinetics of the sulfur reduction reaction process.

View Article and Find Full Text PDF

Hydroxypropyl trimethyl ammonium chloride chitosan (HACC) was synthesized by reacting chitosan with glycidyl trimethylammonium chloride. Atomic force microscopy showed that HACC exhibited disorderly coils in dilute solution and formed a three-dimensional network. Flow, thixotropy, and dynamic viscoelasticity tests were conducted using an MCR301 rheometer.

View Article and Find Full Text PDF

During the long process of wound defect repair, the bioelectric stimulation around the wound gradually decreases, which can cause gradual down-regulation of the wound healing cascade response, disordered deposition of collagen fibers, and abnormal remodeling of the extracellular matrix (ECM). All these combined will eventually result in delayed wound healing and scar tissue formation. To resolve these issues, a novel ZnO nanoparticles modified PVDF/sodium alginate (SA) piezoelectric hydrogel scaffold (ZPFSA) is prepared by 3D printing technology.

View Article and Find Full Text PDF

The shuttling effect of polysulfides is one of the major problems of lithium-sulfur (Li-S) batteries, which causes rapid capacity fading during cycling. Modification of the commercial separator with a functional interlayer is an effective strategy to address this issue. Herein, we modified the commercial Celgard separator of Li-S batteries with one-dimensional (1D) covalent triazine framework (CTF) and a carbon nanotube (CNT) composite as a functional interlayer.

View Article and Find Full Text PDF

Hard-to-healing or nonhealing diabetic wounds caused by hyperglycemia, bacterial infection and chronic inflammation are becoming a challenge globally. In this study, a novel hydrogel for diabetic wound healing composed of methacrylic anhydride-modified gelatin (GelMA) hydrogel and mimicking neutrophil nanoparticles was originally created. The prepared GelMA hydrogel has good sprayability and film-formation ability under blue light illumination (wavelength = 435-480 nm).

View Article and Find Full Text PDF

The exacerbating water pollution and water resource shortage pose a great danger to human health and make it imperative to recycle and treat the sewage. In this study, a direct-writing three-dimensional (3D) printing technology was adopted to prepare a 3D sodium alginate (SA)/graphene oxide (GO)/Ag nanoparticle (AgNP) aerogel (SGA), aiming to turn the complex sewage containing oil, silt, and bacteria into clean water depending only on gravity separation. The physicochemical properties and surface structure of the synthesized SGA were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

The lacks of antibacterial properties, low adhesion and delayed wound healing of the hydrogel wound dressings limit their applications in wound treatment. To resolve these, a novel hydrogel composed of polydopamine (PDA), Ag and graphene oxide (GO) is fabricated for wound dressing via the chemical crosslinking of N-isopropylacrylamide (NIPAM) and N,N'-methylene bisacrylamide (BIS). The prepared hydrogel containing PDA@Ag5GO1 (Ag5GO1 denotes the mass ratio between Ag and GO is 5:1) exhibits effective antibacterial properties and high inhibition rate against E.

View Article and Find Full Text PDF

It is hard to achieve safe, effective, and minimally invasive therapies on myocardial infarction (MI) via conventional treatments. To address this challenge, a vascular endothelial growth factor (VEGF)-loaded and near-infrared (NIR)-triggered self-unfolding graphene oxide (GO)-poly(vinyl alcohol) (PVA) microneedle (MN) patch was designed and fabricated to treat MI through a minimally invasive surgery (MIS). The folded MN patch can be easily placed into the chest cavity through a small cut (4 mm) and quickly recover to its original shape with 10 s of irradiation of NIR light (1.

View Article and Find Full Text PDF