This communication describes a novel strategy to achieve programmable shape transformation of hybrid hydrogel sheets by modulating both the in-plane and out-of-plane mismatches in mechanical properties. Both our experimental and computational results demonstrate that the shape transformation of hybrid hydrogel sheets shows rich features (e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2013
Hydrodynamic flow in a microfluidic (MF) device offers a high-throughput platform for the continuous and controllable self-assembly of amphiphiles. However, the role of hydrodynamics on the assembly of colloidal amphiphiles (CAMs) is still not well understood. This Article reports a systematic study of the assembly of CAMs, which consist of Au nanoparticles (AuNPs) grafted with amphiphilic block copolymers, into vesicles with a monolayer of CAMs in the membranes using laminar flows in MF flow-focusing devices.
View Article and Find Full Text PDFInterconnected macroporous foams were synthesized by templating oil-in-water Pickering high internal phase emulsions solely stabilized by lignin particles. They exhibited excellent adsorption capacity for copper(II) ions in aqueous solutions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2013
Novel ethyl phenylacetate (EPA)-loaded nanocomposite microcapsules with polyurea (PU) /poly (melamine formaldehyde) (PMF) shells were facilely and fabricated: by using silica nanoparticle-stabilized oil-in-water (o/w) emulsion template and subsequent interfacial reaction and in situ polymerization. SiO2 nanoparticles absorbed at the interface between oil and water to stabilize the o/w emulsions. The oil droplets containing EPA, isophorone diisocyanate (IPDI) and tolylene 2,4-diisocyanate-terminated poly (propylene glycol) (PPG-TDI) were subsequently reacted with MF prepolymer (pre-MF) dissolved in water phases.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2013
The hydrodynamics of laminar flow in a microfluidic device has been used to control the continuous self-assembly of gold nanoparticles (NPs) tethered with amphiphilic block copolymers. Spherical micelles, giant vesicles (500 nm-2.0 μm), or disk-like micelles could be formed by varying the flow rates of fluids.
View Article and Find Full Text PDFThis communication describes the formation of tubular structures with a circular cross-section by growing epithelial cells in a microfluidic (MF) device. Here we show for the first time that it is possible to form a monolayer of polarized cells, embedded within the MF device which can function as an in vivo epithelia. We showed: i) the overexpression of specific protein(s) of interest (i.
View Article and Find Full Text PDFChitosan without hydrophobic modification is not a good emulsifier itself. However, it has a pH-tunable sol-gel transition due to free amino groups along its backbone. In the present work, a simple reversible Pickering emulsion system based on the pH-tunable sol-gel transition of chitosan was developed.
View Article and Find Full Text PDFControllable self-assembly of nanoscale building blocks into larger specific structures provides an effective route for the fabrication of new materials with unique optical, electronic, and magnetic properties. The ability of nanoparticles (NPs) to self-assemble like molecules is opening new research frontiers in nanoscience and nanotechnology. We present a new class of amphiphilic "colloidal molecules" (ACMs) composed of inorganic NPs tethered with amphiphilic linear block copolymers (BCPs).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2012
This study is focused on the preparation of Ibuprofen (IBU) loaded micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microspheres and process variables on the size, drug loading and release during preparation of formulation. Silicon dioxide (SiO(2)) nanoparticle-coated PLGA microspheres were fabricated via a combined system of "Pickering-type" emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using SiO(2) nanoparticles as a particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLGA as an oil phase.
View Article and Find Full Text PDF