Publications by authors named "Zenggang Lin"

Room temperature phosphorescence (RTP) materials are increasingly recognized for their superior luminescent properties, which are pivotal in applications such as anti-counterfeiting, information storage, and optoelectronics. Despite this, the sensitivity of most RTP systems to humidity presents a significant challenge in achieving durable RTP performance in aqueous environments. This study proposes a strategy to enhance organic room-temperature phosphorescence through racemization.

View Article and Find Full Text PDF

It is challenging to develop highly stable lanthanide luminescent sensors for detecting heavy metal ions and nitroaromatics in view of the human health and environmental security. To this end, two water stable Ln-MOFs with the chemical constitution of {[Ln(HL)]·3DMF·3H2O}n (Ln = Eu, LZG-Eu and Ln = Tb, LZG-Tb) have been developed solvothermally using a multidentate ligand (H4L) with the central phenyl backbone bisubstituted by 2,6-pyridine-dicarboxylic acid at the para-position, H4L = 1,4-bis(2',2'',6',6''-tetracarboxy-1,4':4,4''-pyridyl)benzene. Single crystal analysis demonstrates that two novel Ln-MOFs feature 4,4,4-connected nets with an unprecedented topology symbol of {42·6·83}2{42·62·82}{42·84} and contain two kinds of one-dimensional channels.

View Article and Find Full Text PDF