Publications by authors named "Zengfu Shang"

Radiotherapy resistance is an important and urgent challenge in the clinical management of esophageal squamous carcinoma (ESCC). However, the factors mediating the ESCC resistance to radiotherapy and its underlying molecular mechanisms are not fully clarified. Our previous studies have demonstrated the critical role of DNA polymerase iota (POLI) in ESCC development and progression, here, we aimed to investigate the involvement of POLI in ESCC radiotherapy resistance and elucidate the underlying molecular mechanism.

View Article and Find Full Text PDF

Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area.

View Article and Find Full Text PDF

DNA-PKcs is a key regulator of DNA double-strand break repair. Apart from its canonical role in the DNA damage response, DNA-PKcs is involved in the cellular response to oxidative stress (OS), but its exact role remains unclear. Here, we report that DNA-PKcs-deficient human cells display depolarized mitochondria membrane potential (MMP) and reoriented metabolism, supporting a role for DNA-PKcs in oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

TAB182 (also named TNKS1BP1), a binding protein of tankyrase 1, has been found to participate in DNA repair. Our previous study has revealed the involvement of TAB182 in the radioresistance of esophageal squamous cell carcinoma (ESCC) cells. However, whether TAB182 contributes to the ESCC tumorigenesis and progression remains unclear.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is one of the most aggressive urological malignancies and has a poor prognosis, especially in patients with metastasis. Although RCC is traditionally considered to be radioresistant, radiotherapy (RT) is still a common treatment for palliative management of metastatic RCC. Novel approaches are urgently needed to overcome radioresistance of RCC.

View Article and Find Full Text PDF

Chromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa.

View Article and Find Full Text PDF

The PI3K/AKT/mTOR signaling pathway is constitutively active in PTEN-deficient cancer cells, and its targeted inhibition has significant anti-tumor effects. However, the efficacy of targeted therapies is often limited due to drug resistance. The relevant signaling pathways in PTEN-deficient cancer cells treated with the PI3K/mTOR inhibitor BEZ235 were screened using a phosphokinase array, and further validated following treatment with multiple PI3K/AKT/mTOR inhibitors or AKT knockdown.

View Article and Find Full Text PDF

Combining targeted therapeutic agents is an attractive cancer treatment strategy associated with high efficacy and low toxicity. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is an essential factor in DNA damage repair. Studies from us and others have revealed that DNA-PKcs also plays an important role in normal mitosis progression.

View Article and Find Full Text PDF

Vanillin is a natural compound endowed with antioxidant and anti-mutagenic properties. We previously identified the vanillin derivative VND3207 with strong radio-protective and antioxidant effects and found that VND3207 confers survival benefit and protection against radiation-induced intestinal injury (RIII) in mice. We also observed that VND3207 treatment enhanced the expression level of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) in human lymphoblastoid cells with or without γ-irradiation.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have gained significant attention in various biomedical applications. The physicochemical properties of these nanoparticles, including toxic effects, are largely determined by their surface modifications. Previous studies have demonstrated high cytotoxicity of the hydroxylated GQDs (OH-GQDs).

View Article and Find Full Text PDF

The intestine is a highly radiosensitive tissue that is susceptible to structural and functional damage due to systemic as well as localized radiation exposure. Unfortunately, no effective prophylactic or therapeutic agents are available at present to manage radiation-induced intestinal injuries. We observed that the vanillin derivative VND3207 improved the survival of lethally irradiated mice by promoting intestinal regeneration and increasing the number of surviving crypts.

View Article and Find Full Text PDF

The E3 ubiquitin ligase RAD18 has been identified as an oncoprotein that exhibits prometastatic properties in various types of cancer; however, the role of RAD18 in cervical cancer (CC) remains unclear. In the present study, it was revealed that increased expression of RAD18 was associated with worse prognosis of patients with CC. Knockdown of endogenous RAD18 suppressed the motility and invasiveness of CC cells, as evaluated by Transwell assays.

View Article and Find Full Text PDF

As a new kind of two-dimensional nanomaterial, black phosphorus (BP) nanosheets have attracted significant interests in diverse bioapplications due to their unique structure and physicochemical properties. Despite BP nanosheets' advantages in cancer diagnosis and therapy applications, their biosafety issues are still unclear. Herein, we report a systematic study on the and toxicity of BP nanosheets.

View Article and Find Full Text PDF

The p53-inducible gene 3 (PIG3) is one of the p53-induced genes at the onset of apoptosis, which plays an important role in cell apoptosis and DNA damage response. Our previous study reported an oncogenic role of PIG3 associated with tumor progression and metastasis in non-small cell lung cancer (NSCLC). In this study, we further analyzed PIG3 mRNA expression in 504 lung adenocarcinoma (LUAD) and 501 lung squamous cell carcinoma (LUSC) tissues from The Cancer Genome Atlas database and we found that PIG3 expression was significantly higher in LUAD with lymph node metastasis than those without, while no difference was observed between samples with and without lymph node metastasis in LUSC.

View Article and Find Full Text PDF

DAB2IP (DOC2/DAB2 interactive protein) is downregulated in several cancer types, and its downregulation is involved in tumor cell proliferation, apoptosis, metastasis, and epithelial-mesenchymal transition (EMT). We aimed to investigate the potential role of DAB2IP in the development and progression of gastric cancer. DAB2IP levels were analyzed in human gastric cancer and adjacent normal tissues by Western blots and immunohistochemistry.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is the most common form of esophageal cancer in China. Since chemotherapy is the standard clinical intervention for advanced ESCC, the development of highly effective and minimal/non-toxic drugs is essential to improve the clinical outcome and prognosis of the patients. A novel derivative of vanillin, 6-bromine-5-hydroxy-4-methoxybenzaldehyde (BVAN08), has been recently reported to activate different cell death pathways in cancer cells.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have attracted significant interests due to their unique chemical and physical properties. In this study, we investigated the potential effects of hydroxyl-modified GQDs (OH-GQDs) on the human esophageal epithelial cell line HET-1A. Our data revealed significant cytotoxicity of OH-GQDs which decreased the viability of HET-1A in a dose and time-dependent manner.

View Article and Find Full Text PDF

The DNA-dependent protein kinase (DNA-PK), consisting of the DNA binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs, has been well characterized in the non-homologous end-joining mechanism for DNA double strand break (DSB) repair and radiation resistance. Besides playing a role in DSB repair, DNA-PKcs is required for the cellular response to replication stress and participates in the ATR-Chk1 signaling pathway. However, the mechanism through which DNA-PKcs is recruited to stalled replication forks is still unclear.

View Article and Find Full Text PDF

An aberrantly elevated expression of DNA polymerase ι (Pol ι) is significantly associated with poor prognosis of patients with esophageal squamous cell carcinoma (ESCC), yet the mechanisms behind this phenomenon remain obscure. Based on the RNA-Seq transcriptome and real-time PCR analysis, we identified ETS-1 as a candidate gene involved in Pol ι-mediated progression of ESCC. Wound-healing and transwell assay indicated that downregulation of ETS-1 attenuates Pol ι-mediated invasiveness of ESCC.

View Article and Find Full Text PDF

Increasing research has indicated that absent in melanoma 2 (AIM2) is aberrantly expressed in several tumor types. However, the association between AIM2 expression and clinicopathological factors or prognosis of patient with colorectal cancer (CRC) remains elusive. In the present study, we first examined the protein and mRNA expression of AIM2 in CRC cell lines by western blotting and quantitative RT-PCR (qRT-PCR).

View Article and Find Full Text PDF

4E-BP1 is a family member of eIF4E binding proteins (4E-BPs) which act as the suppressors of cap-dependent translation of RNA via competitively associating with cap-bound eIF4E. RNA translation regulation is an important manner to control the cellular responses to a series of stress conditions such as ionizing radiation (IR)-induced DNA damage response and cell cycle controlling. This study aimed to determine the mechanism of 4E-BP1 stabilization and its potential downstream target(s) in the response to IR.

View Article and Find Full Text PDF