Liver injury leads to fibrosis and cirrhosis. The primary mechanism underlying the fibrogenic response is the activation of hepatic stellate cells (HSCs), which are 'quiescent' in normal liver but become 'activated' after injury by transdifferentiating into extracellular matrix (ECM)-secreting myofibroblasts. Given that integrins are important in HSC activation and fibrogenesis, we hypothesized that paxillin, a key downstream effector in integrin signaling, might be critical in the fibrosis pathway.
View Article and Find Full Text PDFHistochem Cell Biol
October 2022
Ongoing liver injury leads to fibrosis and ultimately cirrhosis, a leading cause of death worldwide. The primary mechanism underlying the fibrogenic response is the activation of cells known as hepatic stellate cells (HSCs) which are "quiescent" in the normal liver but become "activated" after injury by transdifferentiating into extracellular matrix-secreting myofibroblasts. Since integrins (extracellular matrix binding receptors) are important mediators of HSC activation and fibrogenesis, we hypothesized that focal adhesion (FA) proteins, which link integrins to the intracellular protein machinery, may be important in the activation process.
View Article and Find Full Text PDFHepatic stellate cells (HSCs) are the primary effector cells in liver fibrosis. In the normal liver, HSCs serve as the primary vitamin A storage cells in the body and retain a "quiescent" phenotype. However, after liver injury, they transdifferentiate to an "activated" myofibroblast-like phenotype, which is associated with dramatic upregulation of smooth muscle specific actin and extracellular matrix proteins.
View Article and Find Full Text PDFFibroblasts can be reprogrammed into induced cardiomyocyte-like cells (iCMs) by forced expression of cardiogenic transcription factors. However, it remains unknown how fibroblasts adopt a cardiomyocyte (CM) fate during their spontaneous ongoing transdifferentiation toward myofibroblasts (MFs). By tracing fibroblast lineages following cardiac reprogramming in vitro, we found that most mature iCMs are derived directly from fibroblasts without transition through the MF state.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is one of the most common causes of liver diseases in the United States and can progress to cirrhosis, end-stage liver disease and need for liver transplantation. There are limited therapies for NAFLD, in part, due to incomplete understanding of the disease pathogenesis, which involves different cell populations in the liver. Endoplasmic reticulum stress and its adaptative unfolded protein response (UPR) signaling pathway have been implicated in the progression from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2020
Activation of hepatic stellate cells (HSCs), characterized by development of a robust actin cytoskeleton and expression of abundant extracellular matrix (ECM) proteins, such as type 1 collagen (COL.1), is a central cellular and molecular event in liver fibrosis. It has been demonstrated that HSCs express both myocardin and myocardin-related transcription factor-A (MRTF-A).
View Article and Find Full Text PDFIn the liver, smooth muscle α-actin (SM α-actin) is up-regulated in hepatic stellate cells (HSCs) as they transition to myofibroblasts during liver injury and the wound healing response. Whether SM α-actin has specific functional effects on cellular effectors of fibrosis such as HSC is controversial. Here, the relationship between SM α-actin and type 1 collagen expression (COL1A1), a major extracellular matrix protein important in liver fibrosis, is investigated with the results demonstrating that knockout of SM α-actin leads to reduced liver fibrosis and COL1 expression.
View Article and Find Full Text PDFLiver fibrosis, a model wound healing system, is characterized by excessive deposition of extracellular matrix (ECM) in the liver. Although many fibrogenic cell types may express ECM, the hepatic stellate cell (HSC) is currently considered to be the major effector. HSCs transform into myofibroblast-like cells, also known as hepatic myofibroblasts in a process known as activation; this process is characterized in particular by de novo expression of smooth muscle alpha actin (SM α-actin) and type 1 collagen.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
May 2016
Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks.
View Article and Find Full Text PDFSmooth muscle α actin (Acta2) expression is largely restricted to smooth muscle cells, pericytes and specialized fibroblasts, known as myofibroblasts. Liver injury, associated with cirrhosis, induces transformation of resident hepatic stellate cells into liver specific myofibroblasts, also known as activated cells. Here, we have used in vitro and in vivo wound healing models to explore the functional role of Acta2 in this transformation.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2012
Endothelin-1 (ET-1), a powerful vasoconstrictor peptide, is produced by activated hepatic stellate cells (HSC) and promotes cell proliferation, fibrogenesis, and contraction, the latter of which has been thought to be mechanistically linked to portal hypertension in cirrhosis. Interferon-γ (IFNγ), a Th1 cytokine produced by T cells, inhibits stellate cell proliferation, fibrogenesis, and muscle-specific gene expression. Whether IFNγ-induced inhibitory effects are linked to regulation of ET-1 expression in activated stellate cells remains unknown.
View Article and Find Full Text PDFSmooth muscle α-actin (Acta2) is one of six highly conserved mammalian actin isoforms that appear to exhibit functional redundancy. Nonetheless, we have postulated a specific functional role for the smooth muscle specific isoform. Here, we show that Acta2 deficient mice have a remarkable mammary phenotype such that dams lacking Acta2 are unable to nurse their offspring effectively.
View Article and Find Full Text PDFIFNγ exerts multiple biological effects on effector cells by regulating many downstream genes, including smooth muscle-specific genes. However, the molecular mechanisms underlying IFNγ-induced inhibition of smooth muscle-specific gene expression remain unclear. In this study, we have shown that serum response factor (SRF), a common transcriptional factor important in cell proliferation, migration, and differentiation, is targeted by IFNγ in a STAT1-dependent manner.
View Article and Find Full Text PDFDuring hepatic wound healing, activation of key effectors of the wounding response known as stellate cells leads to a multitude of pathological processes, including increased production of endothelin-1 (ET-1). This latter process has been linked to enhanced expression of endothelin-converting enzyme-1 (ECE-1, the enzyme that converts precursor ET-1 to the mature peptide) in activated stellate cells. Herein, we demonstrate up-regulation of 56- and 62-kDa ECE-1 3'-untranslated region (UTR) mRNA binding proteins in stellate cells after liver injury and stellate cell activation.
View Article and Find Full Text PDF