Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role.
View Article and Find Full Text PDFNeurological disorders, which include various types of diseases with complex pathological mechanisms, are more common in the elderly and have shown increased prevalence, morbidity and mortality worldwide. Unfortunately, current therapies for these diseases are usually suboptimal or have undesirable side effects. This necessitates the development of new potential targets for disease-modifying therapies.
View Article and Find Full Text PDFSchwann cells are components of the peripheral nerve myelin sheath, which supports and nourishes axons. Upon injury of the trigeminal nerve, Schwann cells are activated and cause trigeminal neuralgia by engulfing the myelin sheath and secreting various neurotrophic factors. Further, Schwann cells can repair the damaged nerve and thus alleviate trigeminal neuralgia.
View Article and Find Full Text PDFNeuropathic pain (NPP) is a common symptom of most diseases in clinic, which seriously affects the mental health of patients and brings certain pain to patients. Due to its pathological mechanism is very complicated, and thus, its treatment has been one of the challenges in the field of medicine. Therefore, exploring the pathogenesis and treatment approach of NPP has aroused the interest of many researchers.
View Article and Find Full Text PDFObjectives: The purpose of this study was to determine the effect of microencapsulated olfactory ensheathing cells (MC-OECs) transplantation on neuropathic pain (NPP) caused by sciatic nerve injury in rats, and its relationship with the expression levels of P2X2 receptor (P2X2R) in the L4-5 spinal cord segment.
Methods: Olfactory bulb tissue was removed from a healthy Sprague-Dawley (SD) rat for culturing olfactory ensheathing cells (OECs). Forty-eight SD rats were randomly divided into four groups (12 per group): the sham, chronic constriction injury (CCI), olfactory ensheathing cells (OECs), and MC-OECs groups.
Brain Res Bull
February 2020
Neuropathic Pain (NPP) is caused by direct or indirect damage to the nervous system and is a common symptom of many diseases. Clinically, drugs are usually used to suppress pain, such as (lidocaine, morphine, etc.), but the effect is short-lived, poor analgesia, and there are certain dependence and side effects.
View Article and Find Full Text PDFAs an intractable health threat, neuropathic pain is now a key problem in clinical therapy, which can be caused by lesions affecting the peripheral nervous systems. 1,8-cineole is a natural monoterpene cyclic ether present in eucalyptus and has been reported to exhibit anti-inflammatory and antioxidant effects. Research has shown that 1,8-cineole inhibits P2X3 receptor-mediated neuropathic pains in dorsal root ganglion.
View Article and Find Full Text PDFThere is currently no effective cure for trigeminal neuralgia (TN) - a relatively common disease that causes long-term pain in patients. Previous research has shown that ionotropic ATP signaling through excitatory and calcium-permeable P2X receptor channels plays a critical role in pathological pain generation and maintenance. In this paper, we review several hypotheses on the pathogenic mechanisms underlying TN.
View Article and Find Full Text PDF1,8-cineole is a natural monoterpene cyclic ether present in eucalyptus and has been reported to exhibit anti-inflammatory and antioxidant effects. The therapeutic effects of 1,8-cineole on neuropathic pain and the molecular mechanisms of its pharmacological actions remain largely unknown. In the present study, we investigated the analgesic mechanisms of orally administered 1,8-cineole in a rat model of chronic constriction injury (CCI) and examined the drug-induced modulation of P2X3 receptor expression in dorsal root ganglia.
View Article and Find Full Text PDFSchwann cell transplantation is a promising method to promote neural repair, and can be used for peripheral nerve protection and myelination. Microcapsule technology largely mitigates immune rejection of transplanted cells. We previously showed that microencapsulated olfactory ensheathing cells can reduce neuropathic pain and we hypothesized that microencapsulated Schwann cells can also inhibit neuropathic pain.
View Article and Find Full Text PDFTransplantation of Schwann cells (SCs) can promote axonal regeneration and formation of the myelin sheath, reduce inflammation, and promote repair to the damaged nerve. Our previous studies have shown that transplantation of free or micro-encapsulated olfactory ensheathing cells can relieve neuropathic pain. There are no related reports regarding whether the transplantation of micro-encapsulated SCs can alleviate neuropathic pain mediated by P2X2/3 receptors.
View Article and Find Full Text PDFOlfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs) remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury.
View Article and Find Full Text PDF