Publications by authors named "Zeng You"

Histamine is a highly toxic biogenic amine in food, making its sensitive and rapid detection methods vital for the assurance of edible safety and human health. Here, we explored for the first time a smartphone-enabled ratiometric imprinted fluorescence sensor based on blue/orange MXene quantum dots (MQDs) for fluorescence and visual detection of histamine. A linear relationship between the concentration of histamine and the fluorescence response of the sensor was found in the range of 1-60 μM with a limit of detection (LOD) of 21.

View Article and Find Full Text PDF

The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking CuPd alloy as an example, it refers to assemble a battery using CuPd and Zn as cathode and anode, the charge process of which proceeds at about 1.

View Article and Find Full Text PDF

Background: In recent years, oral frailty was proposed as a new concept regarding dental and oral health in older adults. Poor oral health is linked to preserving general health and has become a geriatric public health problem that deeply affects healthy aging. While in present, evidence on the prevalence associated with oral frailty in older adults remains unclear.

View Article and Find Full Text PDF

Urea, as one of the most sustainable organic solutes, denies the high salt consumption in commercial electrolytes with its peculiar solubility in water. The bi-mixture of urea-HO shows the eutectic feature for increased attention in aqueous Zn-ion electrochemical energy storage (AZEES) technologies. While the state-of-the-art aqueous electrolyte recipes are still pursuing the high-concentrated salt dosage with limited urea adoption and single-anion selection category.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) are attracting worldwide attention due to their multiple merits such as extreme safety, low cost, feasible assembly, and environmentally friendly enabled by water-based electrolytes. At present, AZIBs have experienced systematic advances in battery components including cathode, anode, and electrolyte, whereas research involving separators is insufficient. The separator is the crucial component of AZIBs through providing ion transport, forming contact with electrodes, serving as a container for electrolyte, and ensuring the efficient battery operation.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) with abundant resource and high safety are attracting intensive interest from both research and industry communities in meeting the ever-increasing energy demands. Despite the rapid advance of SIBs, it is difficult yet necessary to enhance the cycling and rate performance at anode due to the sluggish kinetics of "fat" Na. This review provides an overview of two-dimensional (2D) nanomaterials with a short ion diffusion pathway and a superior active sites exposure from the perspectives of synthesis, material chemistry, and structure engineering.

View Article and Find Full Text PDF

Videofluoroscopic swallowing study (VFSS) visualizes the swallowing movement by using X-ray fluoroscopy, which is the most widely used method for dysphagia examination. To better facilitate swallowing assessment, the temporal parameter is one of the most important indicators. However, most information of that acquire is hand-crafted and elaborated, which is time-consuming and difficult to ensure objectivity and accuracy.

View Article and Find Full Text PDF

Background And Purpose: Stress hyperglycemia is common in critical and severe diseases. However, few studies have examined the association between stress hyperglycemia and the functional outcomes of patients with anterior circulation stroke, after mechanical thrombectomy (MT), in different diabetes status. This study therefore aimed to determine the relationship between stress hyperglycemia and the risk of adverse neurological functional outcomes in anterior circulation stroke patients with and without diabetes after MT.

View Article and Find Full Text PDF

Background: Survival rates are usually used to evaluate the effect of cancer treatment and prevention. This study aims to analyze the 5-year relative survival of non-Hodgkin lymphoma (NHL) in United States using population-based cancer registry data.

Methods: A period analysis was used to evaluate the improvement in long-term prognosis of patients with NHL from 2004 to 2018, and a generalized linear model was developed to predict the 5-year relative survival rates of patients during 2019-2023 based on data from the SEER database stratified by age, sex, race and subtype.

View Article and Find Full Text PDF

Background: Plantar fasciitis (PF) is the most common cause of heel pain in adult. There are a variety of ways to treat PF, but these treatments have varied result in their effectiveness, and exist different degrees of limitations. At present, clinical studies focus on the effect of glucocorticoid (GC) and platelet rich plasma (PRP) in the treatment of PF, but there is a lack of systematic evaluation PRP and GC's clinical effect towards PF.

View Article and Find Full Text PDF

Classification of Alzheimer's Disease (AD) has been becoming a hot issue along with the rapidly increasing number of patients. This task remains tremendously challenging due to the limited data and the difficulties in detecting mild cognitive impairment (MCI). Existing methods use gait [or EEG (electroencephalogram)] data only to tackle this task.

View Article and Find Full Text PDF

Graphite film has many remarkable properties and intriguing applications from energy storage, electromagnetic interference (EMI) shielding, and thermal management to ultraviolet lithography. However, the existing synthesis methods require an extremely high processing temperature of ∼3000 °C and/or long processing time of typically hours. Here, we report an ultrafast synthesis of tens of nanometer-thick high-quality graphite films within a few seconds by quenching a hot Ni foil in ethanol.

View Article and Find Full Text PDF

In this study, a target analytical approach using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed to simultaneously determine six isothiazolinones containing 2-Methylisothiazol-3(2H)-one (MI), 5-Chloro-2-methyl-4-isothiazolin-3-one (CMI), 1,2-benzisothiazolin-3-one (BIT), 2-Octyl-3(2H)-isothiazolinone (OIT), Dichlorooctylisothiazolinone (DCOIT), and 2-methyl-1,2-benzisothiazolin-3-one (MBIT) in water-based adhesive used for food contact materials. The main factors affecting extraction efficiency such as extraction method, extraction time, extraction solvent, and solid-liquid ratio have been evaluated by using real adhesive samples. Multiple-reaction monitoring (MRM) was used for the qualitative and quantitative analyses of targeted isothiazolinones.

View Article and Find Full Text PDF

Direct growth of graphene on the metal surface opens a door for obtaining high-performance composites in a simple way. In order to obtain both high strength and enhanced damping property of the porous metal, we prepared graphene-coated nickel hybrid foams by chemical vapor deposition technique and investigated the static and dynamic mechanical properties using a dynamic mechanical analyzer and vibration testing systems in detail. We found that the presence of graphene layers could greatly improve both mechanical strength and damping properties of nickel foams.

View Article and Find Full Text PDF

In order to explore availability of carbon nanotube (CNT)-based positive temperature coefficient (PTC) thermistors in practical application, we prepared carbon nanotube (CNT) filled high density polyethylene (HDPE) composites by using conventional melt-mixing methods, and investigated their PTC effects in details. The CNT-based thermistors exhibit much larger hold current and higher hold voltage, increasing by 129% in comparison with the commercial carbon black (CB) filled HDPE thermistors. Such high current-bearing and voltage-bearing capacity for the CNT/HDPE thermistors is mainly attributed to high thermal conductivity and heat dissipation of entangled CNT networks.

View Article and Find Full Text PDF

Carbon nanotube (CNT) reinforcement of polymer composites has not yielded optimum results in that the composite properties are typically compromised by poor dispersion and random orientation of CNTs in polymers. Given the short lengths available for nanotubes, opportunities lie in incorporating CNTs with other structural reinforcements such as carbon fibers (CFs) to achieve improvement over existing composite designs. Growth of vertically aligned CNTs (VACNTs) offers new avenues for designing high-performance composites by integrating CFs and nanotubes into layered 3D architectures.

View Article and Find Full Text PDF

A super-flexible single-walled carbon nanotube (SWCNT) transparent conductive film (TCF) was produced based on a combination of electrophoretic deposition (EPD) and hot-pressing transfer. EPD was performed in a diluted SWCNT suspension with high zeta potential prepared by a pre-dispersion-then-dilution procedure using sodium dodecyl sulfate as the surfactant and negative charge supplier. A SWCNT film was deposited on a stainless steel anode surface by direct current electrophoresis and then transferred to a poly(ethylene terephthalate) substrate by hot-pressing to achieve a flexible SWCNT TCF.

View Article and Find Full Text PDF