In the design of metasurfaces, integrating multiple tasks into a single small unit cell and achieving regulation through various paths pose a serious challenge. In this paper, a multipath-controlled bidirectional metasurface (MCBM) is designed to achieve polarization regulation, perfect absorption and total reflection as multitasking functions. The findings demonstrate that under different excitation conditions, when co-planar polarized terahertz (THz) waves are incident normally on the metasurface, the MCBM can convert co-planar polarization to cross-polarization, co-planar polarization to circular polarization wave in reflection mode, and co-planar polarization to cross-polarization in transmission, respectively.
View Article and Find Full Text PDFThe prevalent use of multispectral detection technology makes single-band camouflage devices ineffective, and the investigation of technology for camouflage that combines multispectral bands becomes urgent. The multifunctional-hierarchical flexibility metasurfaces (MHFM) for multispectral compatible camouflage of microwave, infrared, and visible, is proposed, fabricated, and measured. MHFM is primarily composed of an infrared shielding layer (IRSL), a radar absorbing layer (RAL), and a visible color layer (VCL).
View Article and Find Full Text PDFA dual-band metasurface array is presented in this paper for electromagnetic (EM) energy harvesting in the Wi-Fi band and band. The array consists of metasurface unit cells, rectifiers, and load resistors. The metasurface units within each column are interconnected to establish two channels of energy delivery, enabling the transmission and aggregation of incident power.
View Article and Find Full Text PDFThe regulation of the magnitude of the depletion effect is necessary for accurately predicting and explaining the emulsion stabilization mechanism. Herein, the bacterial cellulose/carboxymethyl chitosan (BC/CCS) complexes with tunable assembled behaviors were prepared and designed via electrostatic interaction. Specially, the emulsions stabilized by BC/CCS complexes exhibited excellent stability as compared with that stabilized by BC polymers alone.
View Article and Find Full Text PDFThe combination of the new perturbed spiral channel and a slanted gold interfingered transducer (IDT) is designed to achieve precise dynamic separation of target particles (20 μm). The offset micropillar array solves the defect that the high-width flow (avoiding the occurrence of channel blockage) channel cannot realize the focusing of small particles (5 μm, 10 μm). The relationship between the maximum design gap of the micropillar (Smax) and the particle radius () is given: Smax = 4, which not only ensures that small particles will not pass through the micropillar gap, but also is compatible with the appropriate flow rates.
View Article and Find Full Text PDFDelivering effectively zero-valent selenium nanoparticles (SeNPs) and develop its functions in more fields is still a challenge. Herein, a novel template for the preparation and stabilization of SeNP-based surfactants was developed, amphiphilic sodium alginate (APSA), which can self-assemble into micelles in an aqueous solution. Primarily, physicochemical properties of SeNPs stabilized by APSA with different molecular weights were compared and the interaction mechanism of APSA/SeNPs was investigated.
View Article and Find Full Text PDFThe development of an eco-friendly nanopesticide formulation can alleviate the problems of low pesticide utilization and environmental pollution. However, the development of green nanopesticide carriers with ideal physical properties and specific bioavailability is still a challenging task at present. In this study, we propose a novel binary additive pesticide carrier system that is a functional polysaccharide-based polymer/surfactant (Alg-DA/APG) to improve the deposition and retention of pesticide droplets.
View Article and Find Full Text PDFCell separation has become @important in biological and medical applications. Dielectrophoresis (DEP) is widely used due to the advantages it offers, such as the lack of a requirement for biological markers and the fact that it involves no damage to cells or particles. This study aimed to report a novel approach combining 3D sidewall electrodes and contraction/expansion (CEA) structures to separate three kinds of particles with different sizes or dielectric properties continuously.
View Article and Find Full Text PDFThe quantity of absorption bands is traditionally less than the quantity of resonator subunits. Based on the absorption theory of electromagnetic resonance, three-millimeter-wave metamaterial absorbers (MWMAs) based on periodic resonators with double square rings (DSRs) are proposed, discussed, fabricated, and measured. Multiple absorption bands including two, three, and four bands can be effectively achieved by adjusting the dimensions of the DSRs.
View Article and Find Full Text PDF