This work proposes a simple and sensitive solid substrate-room temperature phosphorimetry (SS-RTP) for the selective determination of carvedilol (CV). The method is based on the sensitizing effect of sodium dodecyl benzene sulphonate (SDBS) on CV to activate the oxidation between NaClO and amaranth, resulting in the intense quenching of room temperature phosphorescence (RTP) of the system. Compared with non-SDBS system, the reduction of phosphorescence intensity (ΔI(p)) with SDBS is 16.
View Article and Find Full Text PDFA novel solid substrate-room temperature phosphorimetry (SS-RTP) was developed for determination of bumetanide (BMTN). It was validated by determining selectivity, linearity, accuracy, precision, and signal to noise ratio (S/N) for analysis. And all the experiments presented in this work were based on that BMTN inhibited the formation of [Fe-morin](3+) ([FeR](3+)) complex by the reaction between Fe(3+) and R, which led to severe quenching of room temperature phosphorescence (RTP) signal.
View Article and Find Full Text PDFA new phosphorescent labelling reagent consisting of fullerol, fluorescein isothiocyanate and N,N-dimethylaniline (F-ol-(FITC)(n)-DMA) was developed. The mode of action is based on the reactivity of the active -OH group in F-ol with the -COOH group of FITC to form an F-ol-(FITC)(n)-DMA complex containing several FITC molecules. F-ol-(FITC)(n)-DMA increased the number of luminescent molecules in the biological target of WGA-AP-WGA-F-ol-(FITC)(n)-DMA (WGA and AP are wheat germ agglutinin and alkaline phosphatase, respectively) which improved the sensitivity using solid substrate room temperature phosphorimetry (SSRTP) detection.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2009
Fluorescein (HFin) emitted strong and stable room temperature phosphorescence (RTP) on filter paper after set at 50 degrees C for 10 min using Li(+) as the ion perturber. HFin existed as Fin(-) when the pH value was in the range of 5.45-7.
View Article and Find Full Text PDFA new phosphorescent labeling reagent named self-ordered ring (ESOR) of eosin Y (E) was developed. And the application of the determination of bioactive matter by affinity adsorption solid substrate-room temperature phosphorimetry (AA-SS-RTP) based on ESOR labeling lectin was studied. Results showed that pink and homogeneous ESOR could be formed by E on polyamide membrane (PAM) in the presence of cetyltrimethylammonium bromide (CTAB) and ammonia water.
View Article and Find Full Text PDFFullerenol (F) shows a strong and stable room-temperature phosphorescence (RTP) signal on the surface of nitrocellulose membrane (NCM) at lambda ex max/ lambda em max =542.0/709.4 nm.
View Article and Find Full Text PDFIn this paper, 3.5-generation polyamidoamine dendrimers (3.5G-D)-porphyrin (P) dual luminescence molecule (3.
View Article and Find Full Text PDFWhen 1.00 mol l(-1) I(-) is used as ion perturber, rhodamine 6G (Rh 6G) can emit strong and stable room temperature phosphorescence (RTP) on filter paper substrate in KHC(8)H(4)O(4)-HCl buffer solution (pH = 3.50), heated at 70 degrees C for 10 min.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2005
A new method for the determination of trace aluminum has been proposed. It is based on the fact that alizarin red can emit strong and stable fluorescence at 80 degrees C for 30 min and Al(3+) can effectively catalyze potassium chlorate oxidizing alizarin red to form non-fluorescence complex which cause the fluorescence quenching. The linear dynamic range of this method is 0.
View Article and Find Full Text PDFSilicon dioxide nano-particles, diameter 50 nm, containing morin (morin-SiO2) have been synthesized by the sol-gel method. They emit strong and stable room-temperature phosphorescence (SS-RTP) on filter paper as substrate, and bismuth can quench the intensity of the SS-RTP. On this basis a new morin-SiO2 solid-substrate room-temperature phosphorescence-quenching method has been established for determination of traces of bismuth.
View Article and Find Full Text PDF