Publications by authors named "Zeng Chunyu"

Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes.

View Article and Find Full Text PDF

Dopamine receptors have been identified in a number of organs and tissues, which include the central and peripheral nervous systems, various vascular beds, the heart, the gastrointestinal tract, and the kidney. Dopamine receptors are classified into D1- and D2- like subtypes based on their structure and pharmacology; during conditions of moderate sodium balance, more than 50% of renal sodium excretion is regulated by D1-like receptors. Most of the knowledge on the actions of dopamine has been focused on the D1 dopamine receptor.

View Article and Find Full Text PDF

Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport, vascular smooth muscle contractility and production of reactive oxygen species and by interacting with the renin-angiotensin and sympathetic nervous systems. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3) and D(4)) subtypes based on their structure and pharmacology. Each of the dopamine receptor subtypes participates in the regulation of blood pressure by mechanisms specific for the subtype.

View Article and Find Full Text PDF

Essential hypertension is a major factor for myocardial infarction, heart failure and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and vasodilatation directly or indirectly with other hormones and humoral factors, such as reactive oxygen species and the renin-angiotensin system. Dopamine receptors are classified into five subtypes based on their structure and pharmacology.

View Article and Find Full Text PDF

The dopaminergic and renin angiotensin systems interact to regulate blood pressure. Disruption of the D(3) dopamine receptor gene in mice produces renin-dependent hypertension. In rats, D(2)-like receptors reduce angiotensin II binding sites in renal proximal tubules (RPTs).

View Article and Find Full Text PDF

Objective: Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. We investigated the role of G protein kinase (GRK) 4gamma in essential hypertension in GRK4gamma mutant A142V transgenic mice.

Methods: Blood pressure, renal sodium excretion, D(1) receptor protein expression and phosphorylation were measured in GRK4gammaA142V transgenic mice and control mice.

View Article and Find Full Text PDF

Abnormalities in D1 dopamine receptor function in the kidney are present in some types of human essential and rodent genetic hypertension. We hypothesize that increased activity of G protein-coupled receptor kinase type 4 (GRK4) causes the impaired renal D1 receptor function in hypertension. We measured renal GRK4 and D1 and serine-phosphorylated D1 receptors and determined the effect of decreasing renal GRK4 protein by the chronic renal cortical interstitial infusion (4 weeks) of GRK4 antisense oligodeoxynucleotides (As-Odns) in conscious- uninephrectomized spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar-Kyoto (WKY) rats.

View Article and Find Full Text PDF

Objective: To investigate the mechanisms by which hypertension occurs in D(3) dopamine receptor null mice (D(3)-/-).

Methods: Several parameters, including blood pressure, renal sodium excretion, D(3) receptor protein and mRNA expression, plasma renin activity, norepinephrine concentration and AT(1) receptor expression were checked in D(3)-/- mice and their littermate wild type mice (D(3)+/+). Moreover, the vasorelaxant effect of D(3) receptor stimulation was measured with ex-vivo mesenteric artery isolated from Wistar-Kyoto rats.

View Article and Find Full Text PDF

D3 receptors act synergistically with D1 receptors to inhibit sodium transport in renal proximal tubules; however, the mechanism by which this occurs is not known. Because dopamine receptor subtypes can regulate and interact with each other, we studied the interaction of D3 and D1 receptors in rat renal proximal tubule (RPT) cells. The D3 agonist PD128907 increased the immunoreactive expression of D1 receptors in a concentration- and time-dependent manner; these effects were blocked by the D3 antagonist U99194A.

View Article and Find Full Text PDF

The dopaminergic and renin-angiotensin systems regulate blood pressure, in part, by affecting sodium transport in renal proximal tubules (RPTs). We have reported that activation of a D1-like receptor decreases AT1 receptor expression in the mouse kidney and in immortalized RPT cells from Wistar-Kyoto (WKY) rats. The current studies were designed to test the hypothesis that activation of the AT1 receptor can also regulate the D1 receptor in RPT cells, and this regulation is aberrant in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

The renin-angiotensin and endothelin systems regulate blood pressure, in part, by affecting renal tubular sodium transport. In rodents, ETB receptors decrease proximal tubular reabsorption, whereas AT1 receptors produce the opposite effect. We hypothesize that ETB and AT1 receptors interact at the receptor level, and that the interaction is altered in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

Background: The renin-angiotensin and endothelin systems interact to regulate blood pressure, in part, by affecting sodium transport in the kidney. Because angiotensin II type 1 (AT(1)) receptor activation increases ETB receptor expression in renal proximal tubule cells from Wistar-Kyoto (WKY) rat, we hypothesize that ETB receptor activation may also regulate AT(1) receptor expression. Furthermore, ETB receptor regulation of the AT(1) receptor may be different in the WKY and spontaneously hypertensive rat (SHR).

View Article and Find Full Text PDF

Angiotensin II type 1 (AT1) receptor and D1 and D3 dopamine receptors directly interact in renal proximal tubule (RPT) cells from normotensive Wistar-Kyoto rats (WKY). There is indirect evidence for a D5 and AT1 receptor interaction in WKY and spontaneously hypertensive rats (SHR). Therefore, we sought direct evidence of an interaction between AT1 and D5 receptors in RPT cells.

View Article and Find Full Text PDF

Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and reactive oxygen and by interacting with vasopressin, renin-angiotensin, and the sympathetic nervous system. Decreased renal dopamine production and/or impaired dopamine receptor function have been reported in hypertension. Disruption of any of the dopamine receptors (D(1), D(2), D(3), D(4), and D(5)) results in hypertension.

View Article and Find Full Text PDF

Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. Under normal conditions, D(1)-like receptors (D(1) and D(5)) inhibit sodium transport in the kidney and intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats (SHRs) and in humans with essential hypertension, the D(1)-like receptor-mediated inhibition of epithelial sodium transport is impaired because of an uncoupling of the D(1)-like receptor from its G protein/effector complex.

View Article and Find Full Text PDF

This study evaluated the response of the Na(+)/H(+) exchanger (NHE) to dopamine D(1)- and D(2)-like receptor stimulation in immortalized renal proximal tubular epithelial cells and freshly isolated renal proximal tubules from the spontaneously hypertensive rat (SHR) and their normotensive controls (Wistar Kyoto rats; WKY). Stimulation of D(1)-like receptors with SKF 38393 attenuated NHE activity in WKY cells (IC(50)=151 nM), but not in SHR cells. Stimulation of D(2)-like receptors with quinerolane (IC(50)=120 nM) attenuated NHE activity in SHR cells, but not in WKY cells.

View Article and Find Full Text PDF

Dopamine is an important modulator of blood pressure, in part, by regulating vascular resistance. To test the hypothesis that D(1) and D(3) receptors interact in vascular smooth muscle cells, we studied A10 cells, a rat aortic smooth muscle cell line, and rat mesenteric arteries that express both dopamine receptor subtypes. Fenoldopam, a D(1)-like receptor agonist, increased both D(1) and D(3) receptor protein in a time-dependent and a concentration-dependent manner in A10 cells.

View Article and Find Full Text PDF

Dopamine plays a role in the regulation of blood pressure by inhibition of sodium transport in renal proximal tubules (RPTs) and relaxation of vascular smooth muscles. Because dopamine receptors can regulate and interact with each other, we studied the interaction of D(1) and D(3) receptors in immortalized RPT cells and mesenteric arteries from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs), and in human coronary artery smooth muscle cells (CASMCs). In WKY rats, the D(1)-like agonist, fenoldopam, increased D(3) receptor protein in a time-dependent and concentration-dependent manner (EC(50)=4.

View Article and Find Full Text PDF

The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Because this interaction may be perturbed in genetic hypertension, we studied D1 dopamine and AT1 angiotensin receptors in immortalized renal proximal tubule (RPT) and A10 aortic vascular smooth muscle cells. In normotensive Wistar-Kyoto (WKY) rats, the D1-like agonist fenoldopam increased D1 receptors but decreased AT1 receptors.

View Article and Find Full Text PDF

Dopamine and angiotensin II negatively interact to regulate sodium excretion and blood pressure. D3 dopamine receptors downregulate angiotensin type 1 (AT1) receptors in renal proximal tubule cells from normotensive Wistar-Kyoto rats. We determined whether AT1 receptors regulate D3 receptors and whether the regulation is different in cultured renal proximal tubule cells from normotensive and spontaneously hypertensive rats.

View Article and Find Full Text PDF

The roles of the G-protein alpha-subunits, Gs, Gi, and Gq/11, in the signal transduction of the D1-like dopamine receptors, D1 and D5, have been deciphered. Galpha12 and Galpha13, members of the 4th family of G protein subunits, are not linked with D1 receptors, and their linkage to D5 receptors is not known. Therefore, we studied the expression of Galpha12 and Galpha13 and interaction with D5 dopamine receptors in the kidney from normotensive Wistar-Kyoto (WKY) rats and D5 receptor-transfected HEK293 cells.

View Article and Find Full Text PDF

To investigate the effects of the angiotensin-converting enzyme (ACE) inhibitor, peridopril, and the beta-adrenergic blocker, metoprolol, on plasma neuropeptide Y (NPY), and NPY receptors in aortic vascular smooth muscle cells (VSMCs) from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR), both strains of rats were fed with different doses of the drugs (peridopril or metoprolol) for 7 days to get the optimal dosages. After that, 18 male SHR and 18 male age-matched WKY rats were divided into three groups: control, peridopril (2mg/kg/day) and metoprolol (2mg/kg/day). After two months of treatment, VSMCs were isolated from the media layer of the aortic wall.

View Article and Find Full Text PDF