Glaucoma, a predominant cause of visual impairment on a global scale, poses notable challenges in diagnosis owing to its initially asymptomatic presentation. Early identification is vital to prevent irreversible vision impairment. Cutting-edge deep learning techniques, such as vision transformers (ViTs), have been employed to tackle the challenge of early glaucoma detection.
View Article and Find Full Text PDFBackground: Accurate gastrointestinal (GI) lesion segmentation is crucial in diagnosing digestive tract diseases. An automatic lesion segmentation in endoscopic images is vital to relieving physicians' burden and improving the survival rate of patients. However, pixel-wise annotations are highly intensive, especially in clinical settings, while numerous unlabeled image datasets could be available, although the significant results of deep learning approaches in several tasks heavily depend on large labeled datasets.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
July 2022
Purpose: As with several medical image analysis tasks based on deep learning, gastrointestinal image analysis is plagued with data scarcity, privacy concerns and an insufficient number of pathology samples. This study examines the generation and utility of synthetic samples of colonoscopy images with polyps for data augmentation.
Methods: We modify and train a pix2pix model to generate synthetic colonoscopy samples with polyps to augment the original dataset.