Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active.
View Article and Find Full Text PDFMembrane fusion is the first essential step in HIV-1 replication. The gp41 subunit of HIV-1 envelope protein (Env), a class I fusion protein, achieves membrane fusion by forming a structure called a six-helix bundle composed of N- and C-terminal heptad repeats. We have recently shown that the distal portion of the α9 helix in the C-terminal heptad repeat of X4-tropic HXB2 Env plays a critical role in the late-stage membrane fusion and viral infection.
View Article and Find Full Text PDFBackground: The native pre-fusion structure of gp120/gp41 complex of human immunodeficiency virus type 1 was recently revealed. In the model, the helices of gp41 (α6, α7, α8, and α9) form a four-helix collar underneath trimeric gp120. Gp41 is a class I fusion protein and mediates membrane fusion by forming a post-fusion structure called the six-helix bundle (6HB).
View Article and Find Full Text PDFMiddle East respiratory syndrome (MERS) is an emerging infectious disease associated with a relatively high mortality rate of approximately 40%. MERS is caused by MERS coronavirus (MERS-CoV) infection, and no specific drugs or vaccines are currently available to prevent MERS-CoV infection. MERS-CoV is an enveloped virus, and its envelope protein (S protein) mediates membrane fusion at the plasma membrane or endosomal membrane.
View Article and Find Full Text PDFHerpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion.
View Article and Find Full Text PDFFusion between viral and cellular membranes is the essential first step in infection of enveloped viruses. This step is mediated by viral envelope glycoproteins (Env) that recognize cellular receptors. The membrane fusion between the effector cells expressing viral Env and the target cells expressing its receptors can be monitored by several methods.
View Article and Find Full Text PDFHuman immunodeficiency virus type I (HIV-1), a causative agent of AIDS, is affecting today more than 35 millions of people worldwide. The advance of anti-HIV chemotherapy has made AIDS a chronic non-fatal disease in resourceful countries. Long-awaited anti-HIV-1 vaccine is still not with us yet; however, great progress in structural analyses of the envelope protein of HIV-1 in recent years starts to shed light on rational intervention targeted at the envelope protein, as will be reviewed in this article.
View Article and Find Full Text PDFThe mature human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) comprises the non-covalently associated gp120 and gp41 subunits generated from the gp160 precursor. Recent structural analyses have provided quaternary structural models for gp120/gp41 trimers, including the variable loops (V1-V5) of gp120. In these models, the V3 loop is located under V1/V2 at the apical center of the Env trimer, and the V4 and V5 loops project outward from the trimeric protomers.
View Article and Find Full Text PDFThe envelope glycoprotein (Env) of human immunodeficiency virus type I (HIV-1) mediates membrane fusion. To analyze the mechanism of HIV-1 Env-mediated membrane fusion, it is desirable to determine the expression level of Env on the cell surface. However, the quantification of Env by immunological staining is often hampered by the diversity of HIV-1 Env and limited availability of universal antibodies that recognize different Envs with equal efficiency.
View Article and Find Full Text PDFIntroduction: A dual split reporter protein system (DSP), recombining Renilla luciferase (RL) and green fluorescent protein (GFP) split into two different constructs (DSP1-7 and DSP8-11), was adapted to create a novel rapid phenotypic tropism assay (PTA) for HIV-1 infection (DSP-Pheno).
Methods: DSP1-7 was stably expressed in the glioma-derived NP-2 cell lines, which expressed CD4/CXCR4 (N4X4) or CD4/CCR5 (N4R5), respectively. An expression vector with DSP8-11 (pRE11) was constructed.
Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion.
View Article and Find Full Text PDFRecent rapid developments in Asian and African countries bring an opportunity of cross-species transmission of pathogens through unprecedented contacts between people and wild animals. Furthermore, increase of global exchanges of people and products facilitates a rapid spread of infectious diseases worldwide. China has an enormous population with diverse ethnic groups within its wide territory; furthermore, it is experiencing very rapid urbanization.
View Article and Find Full Text PDFSplit reporter proteins capable of self-association and reactivation have applications in biomedical research, but designing these proteins, especially the selection of appropriate split points, has been somewhat arbitrary. We describe a new methodology to facilitate generating split proteins using split GFP as a self-association module. We first inserted the entire GFP module at one of several candidate split points in the protein of interest, and chose clones that retained the GFP signal and high activity relative to the original protein.
View Article and Find Full Text PDFHIV-1 entry into cells is mediated by interactions between the envelope (Env) gp120 and gp41 proteins with CD4 and chemokine receptors via an intermediate called the viral fusion complex (vFC). Here, mAbs were used to find the dynamic changes in expression of antigenic epitopes during vFC formation. A CD4-specific mAb (R275) and anti-vFC mAbs, designated F12-1, F13-6 and F18-4 that recognize the epitopes only appeared by the co-culture of env-transfected 293FT and CD4-transfected 293 cells, were developed by immunizing ganp-gene transgenic mice with an vFC-like structure formed by the same co-culture.
View Article and Find Full Text PDFDespite the high mutation rate of HIV-1, the amino acid sequences of the membrane-spanning domain (MSD) of HIV-1 gp41 are well conserved. Arginine residues are rarely found in single membrane-spanning domains, yet an arginine residue, R(696) (the numbering is based on that of HXB2), is highly conserved in HIV-1 gp41. To examine the role of R(696), it was mutated to K, A, I, L, D, E, N, and Q.
View Article and Find Full Text PDFCurr Protoc Cell Biol
March 2011
A simple and real-time cell-based assay of membrane fusion employing a pair of engineered novel reporter proteins is described. The reporter proteins are chimeras of split Renilla luciferase (RL) and split green fluorescent protein (GFP). This reporter allows us to perform both quantitative (RL mode) and visible (GFP mode) membrane fusion assays in live cells.
View Article and Find Full Text PDFFulminant hepatitis can cause acute liver failure and death in both humans and mice. However, the cellular and molecular mechanisms underlying the acute disease are still not well understood. Here, we examine the role of Th17 response in the development of the acute hepatitis following infection with mouse hepatitis virus (MHV).
View Article and Find Full Text PDFBackground: The gp41 subunit of the HIV-1 envelope glycoprotein (Env) has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD). An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model.
View Article and Find Full Text PDFBackground: The sequences of membrane-spanning domains (MSDs) on the gp41 subunit are highly conserved among many isolates of HIV-1. The GXXXG motif, a potential helix-helix interaction motif, and an arginine residue (rare in hydrophobic MSDs) are especially well conserved. These two conserved elements are expected to locate on the opposite sides of the MSD, if the MSD takes a α-helical secondary structure.
View Article and Find Full Text PDFTo help understand the dynamic nature of membrane fusion induced by the human immunodeficiency virus-1 (HIV-1) envelope protein, we developed a new cell-based real-time assay system employing a pair of novel reporter proteins. The reporter proteins consist of a pair of split Renilla luciferase (spRL) fused to split green fluorescent protein (spGFP). The spGFP modules were chosen not only to compensate weak self-association of spRL but also to provide visual reporter signals during membrane fusion.
View Article and Find Full Text PDFA simple, cell-based, membrane fusion assay system that uses split green fluorescent proteins (spGFPs) as an indicator was developed. The attachment of the pleckstrin homology (PH) domain to the N-termini of each spGFP not only localized the reporter signal to the plasma membrane but also helped the stable expression of the smaller spGFP of seventeen amino acid residues. It was shown that this system allowed real-time monitoring of membrane fusion by HIV-1 envelope protein (Env) without the addition of external substrates.
View Article and Find Full Text PDFThe expression and solubilization of insoluble proteins have been facilitated by the introduction of protein tags. In our analyses of viral protein R (Vpr) of human immunodeficiency virus 1 (HIV-1), however, several conventional tag proteins enhanced its expression but failed to solubilize it. Therefore, we decided to explore whether proteins derived from Thermus thermophilus HB8 (T.
View Article and Find Full Text PDFHIV-1 is an etiological agent of AIDS. One of the targets of the current anti-HIV-1 combination chemotherapy, called highly active antiretroviral therapy (HAART), is HIV-1 protease (PR), which is responsible for the processing of viral structural proteins and, therefore, essential for virus replication. Here, we describe an in vitro transcription/translation-based method of phenotyping HIV-1 PR.
View Article and Find Full Text PDFObjective: Tat-dependent transcriptional elongation is crucial for the replication of HIV-1 and depends on positive transcription elongation factor b complex (P-TEFb), composed of cyclin dependent kinase 9 (CDK9) and cyclin T. Hexamethylene bisacetamide-induced protein 1 (HEXIM1) inhibits P-TEFb in cooperation with 7SK RNA, but direct evidence that this inhibition limits the replication of HIV-1 has been lacking. In the present study we examined whether the expression of FLAG-tagged HEXIM1 (HEXIM1-f) affected lentiviral replication in human T cell lines.
View Article and Find Full Text PDF