Publications by authors named "Zemer Gitai"

Unlabelled: Understanding the mechanisms that dictate the localization of cytoskeletal filaments is crucial for elucidating cell shape regulation in prokaryotes. The actin homolog MreB plays a pivotal role in maintaining the shape of many rod-shaped bacteria such as by directing cell-wall synthesis according to local curvature cues. However, the basis of MreB's curvature-dependent localization has remained elusive.

View Article and Find Full Text PDF

Surface-attached cells can sense and respond to shear flow, but planktonic (free-swimming) cells are typically assumed to be oblivious to any flow that carries them. Here, we find that planktonic bacteria can transcriptionally respond to flow, inducing expression changes that are beneficial in flow. Specifically, we use microfluidic experiments and quantitative modeling to show that in the presence of flow, planktonic induce shear rate-dependent genes that promote growth in low-oxygen environments.

View Article and Find Full Text PDF
Article Synopsis
  • Detecting chemical signals helps organisms find food and avoid dangers.
  • Research shows that the small RNA P11 in Pseudomonas aeruginosa plays a role in attracting C. elegans to bacteria by influencing ammonia production.
  • This study reveals how nitrogen assimilation by bacteria affects both their fitness and their interaction with hosts like C. elegans, highlighting the importance of this process for signaling between species.
View Article and Find Full Text PDF

Protein turnover is critical for proteostasis, but turnover quantification is challenging, and even in well-studied E. coli, proteome-wide measurements remain scarce. Here, we quantify the turnover rates of ~3200 E.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a leading cause of hospital-acquired infections for which the development of antibiotics is urgently needed. Unlike most enteric bacteria, P. aeruginosa lacks enzymes required to scavenge exogenous thymine.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is comprised of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial Genetically Encoded Multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-2160 to +1800 e) in live cells.

View Article and Find Full Text PDF

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen . The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence.

View Article and Find Full Text PDF

C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C.

View Article and Find Full Text PDF

Detecting chemical signals is important for identifying food sources and avoiding harmful agents. Like most animals, use olfaction to chemotax towards their main food source, bacteria. However, little is known about the bacterial compounds governing attraction to bacteria and the physiological importance of these compounds to bacteria.

View Article and Find Full Text PDF

The built environment (BE) consists of human-made structures and, much like living organisms, is colonized by bacteria that make up the BE microbiome. The BE microbiome can potentially affect human health because of the constant proximity of these bacteria to humans. This has led to increasing public concern of whether the bacteria in the BE are harmful.

View Article and Find Full Text PDF

Bacterial populations are highly adaptive. They can respond to stress and survive in shifting environments. How the behaviours of individual bacteria vary during stress, however, is poorly understood.

View Article and Find Full Text PDF

Previously, we discovered that a small RNA from a clinical isolate of PA14, induces learned avoidance and its transgenerational inheritance in . is an important human pathogen, and there are other in natural habitat, but it is unclear whether ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in natural habitat can also regulate host behavior and produce heritable behavioral effects.

View Article and Find Full Text PDF

The skin microbiome provides vital contributions to human health. However, the spatial organization and viability of its bacterial components remain unclear. Here, we apply culturing, imaging, and molecular approaches to human and mouse skin samples, and find that the skin surface is colonized by fewer viable bacteria than predicted by bacterial DNA levels.

View Article and Find Full Text PDF

Bacterial pathogenicity relies on both firm surface adhesion and cell dissemination. How twitching bacteria resolve the fundamental contradiction between adhesion and migration is unknown. To address this question, we employ live-cell imaging of type-IV pili (T4P) and therewith construct a comprehensive mathematical model of migration.

View Article and Find Full Text PDF

In mammals, subcellular protein localization of factors like planar cell polarity proteins is a key driver of the multicellular organization of tissues. Bacteria also form organized multicellular communities, but these patterns are largely thought to emerge from regulation of whole-cell processes like growth, motility, cell shape, and differentiation. Here we show that a unique intracellular patterning of appendages known as type IV pili (T4P) can drive multicellular development of complex bacterial communities.

View Article and Find Full Text PDF

How well mRNA transcript levels represent protein abundances has been a controversial issue. Particularly across different environments, correlations between mRNA and protein exhibit remarkable variability from gene to gene. Translational regulation is likely to be one of the key factors contributing to mismatches between mRNA level and protein abundance in bacteria.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a significant threat in healthcare settings where it deploys a wide host of virulence factors to cause disease. Many virulence-related phenotypes such as pyocyanin production, biofilm formation, and twitching motility have been implicated in causing disease in a number of hosts. In this study, we investigate these three virulence factors in a collection of 22 clinical strains isolated from blood stream infections.

View Article and Find Full Text PDF

The ability of eukaryotic cells to differentiate surface stiffness is fundamental for many processes like stem cell development. Bacteria were previously known to sense the presence of surfaces, but the extent to which they could differentiate stiffnesses remained unclear. Here we establish that the human pathogen Pseudomonas aeruginosa actively measures surface stiffness using type IV pili (TFP).

View Article and Find Full Text PDF

Pancreatic cancer cells with limited access to free amino acids can grow by scavenging extracellular protein. In a murine model of pancreatic cancer, we performed a genome-wide CRISPR screen for genes required for scavenging-dependent growth. The screen identified key mediators of macropinocytosis, peripheral lysosome positioning, endosome-lysosome fusion, lysosomal protein catabolism, and translational control.

View Article and Find Full Text PDF

The spread of pathogenic bacteria in unsaturated porous media, where air and liquid coexist in pore spaces, is the major cause of soil contamination by pathogens, soft rot in plants, food spoilage, and many pulmonary diseases. However, visualization and fundamental understanding of bacterial transport in unsaturated porous media are currently lacking, limiting the ability to address the above contamination- and disease-related issues. Here, we demonstrate a previously unreported mechanism by which bacterial cells are transported in unsaturated porous media.

View Article and Find Full Text PDF

The marine alpha-proteobacterium Phaeobacter inhibens engages in intermittent symbioses with microalgae. The symbiosis is biphasic and concludes in a parasitic phase, during which the bacteria release algaecidal metabolites in response to algal p-coumaric acid (pCA). The cell-wide effects of pCA on P.

View Article and Find Full Text PDF

Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations.

View Article and Find Full Text PDF

Bacterial species have diverse cell shapes that enable motility, colonization and virulence. The cell wall defines bacterial shape and is primarily built by two cytoskeleton-guided synthesis machines, the elongasome and the divisome. However, the mechanisms producing complex shapes, like the curved-rod shape of Vibrio cholerae, are incompletely defined.

View Article and Find Full Text PDF

Bacteria use extracellular appendages called type IV pili (T4P) for diverse behaviors including DNA uptake, surface sensing, virulence, protein secretion, and twitching motility. Dynamic extension and retraction of T4P is essential for their function, and T4P extension is thought to occur through the action of a single, highly conserved motor, PilB. Here, we develop Acinetobacter baylyi as a model to study T4P by employing a recently developed pilus labeling method.

View Article and Find Full Text PDF

Several essential components of the electron transport chain, the major producer of ATP in mammalian cells, are encoded in the mitochondrial genome. These 13 proteins are translated within mitochondria by 'mitoribosomes'. Defective mitochondrial translation underlies multiple inborn errors of metabolism and has been implicated in pathologies such as aging, metabolic syndrome and cancer.

View Article and Find Full Text PDF