The purpose of this study was to design and evaluate a new vaginal delivery system for the local treatment of vaginitis. Liposomes containing two commonly applied drugs in the treatment of vaginal infections, namely clotrimazole and metronidazole, were prepared by the proliposome and the polyol dilution methods. Both types of liposomes were characterised and compared for particle size, polydispersity, entrapment efficiency, and tested for in vitro stability in media that mimic human vaginal conditions (buffer, pH 4.
View Article and Find Full Text PDFDesign of a liposome delivery system for vaginal administration of acyclovir, able to provide sustained release and improved bioavailability of the encapsulated drug for the local treatment of genital herpes was investigated. Acyclovir was encapsulated in liposomes prepared by the polyol dilution method, whereby various phospholipid compositions were used: egg phosphatidylcholin (PC)/egg phosphatidylglycerol (PG) 9:1, egg phosphatidylcholine (PC) and egg phosphatidycholine (PC)/stearylamine (SA) 9:3. All liposome preparations were characterized and compared for particle size, polydispersity, encapsulation efficiency and tested for in vitro stability in different media chosen to simulate human vaginal conditions: buffer, pH 4.
View Article and Find Full Text PDFThe aim of our study was to develop a liposomal carrier system for the local treatment of bacterial vaginosis, capable to efficiently deliver entrapped drug during an extended period of time. Chloramphenicol was entrapped in liposomes composed of egg phosphatidylcholine/egg phosphatidylgycerol-sodium (9:1, molar ratio) and prepared by two different methods, the proliposome method and the polyol dilution method. Both liposome preparations were characterised and compared for particle size, polydispersity, entrapment efficiency and tested for in vitro stability in media that simulate human vaginal conditions (buffer pH 4.
View Article and Find Full Text PDFSuperoxide dismutase (SOD), antioxidative enzyme and potential anti-inflammatory agent, was encapsulated into mucoadhesive chitosan-coated liposomes in order to increase its releasing time and to facilitate its cellular penetration. Positively, neutrally and negatively charged liposomes were prepared using soybean lecithin, stearylamine, phosphatidyl glycerol and cholesterol. The effects of liposomal lipid composition and protein to lipid ratio on the encapsulation parameters were studied in three preparation methods: dehydration-rehydration, hydration and proliposome methods.
View Article and Find Full Text PDF