Complexes with low-molecular-weight thiols are crucial species of methylmercury (MeHg) excreted by anaerobic Hg-methylating microbes, notably, MeHg-cysteine (MeHg-Cys). As MeHg-Cys diffuses into surface water, it would undergo a ligand exchange process with dissolved organic matter (DOM) under nonsulfidic conditions, inevitably altering MeHg speciation and bioavailability to phytoplankton. In this study, we investigated the competitive binding kinetics between MeHg-Cys and Suwannee River natural organic matter, and their influence on the adsorption and uptake of MeHg by the cyanobacterium, sp.
View Article and Find Full Text PDFDissolved organic matter (DOM)-mediated divalent mercury (Hg(II)) aging kinetics play a crucial role in controlling Hg(II) transformation and bioavailability in natural aquatic environments. However, the differential environmental behaviors of new and aged Hg(II) in a same reaction system remains unknown. In this study, multi-isotope tracing was used to investigate the impacts of binding site and sulfidation during DOM-mediated Hg(II) aging processes on Hg(II) reduction and microbial methylation in the same reaction system.
View Article and Find Full Text PDFNatural organic matter (NOM) and crystalline metal oxide nanoparticles are both prevalent in natural aquatic environments, and their interactions have important environmental and biogeochemical implications. Here, we show that these interactions are significantly affected by an intrinsic property of metal oxide nanocrystals, the exposed facets. Both anatase (TiO) and hematite (α-FeO) nanocrystals, representing common engineered and naturally occurring metal oxides, exhibited apparent facet-dependent adsorption of humic acid and fulvic acid.
View Article and Find Full Text PDFThis study was conducted to evaluate the inhalation carcinogenic risk of PAHs in biochar fine particles using total concentration-based assessment approach and bioaccessibility-based assessment approach. Only limit PAHs in particles can be released in simulated lung fluids, leading to a low bioaccessibility (only ranging from 0.34% to 1.
View Article and Find Full Text PDF