Publications by authors named "Zelin Mai"

Ozone pollution is profoundly modulated by meteorological features such as temperature, air pressure, wind, and humidity. While many studies have developed empirical models to elucidate the effects of meteorology on ozone variability, they predominantly focus on local weather conditions, overlooking the influences from high-altitude and broader regional meteorological patterns. Here, we employ convolutional neural networks (CNNs), a technique typically applied to image recognition, to investigate the influence of three-dimensional spatial variations in meteorological fields on the daily, seasonal, and interannual dynamics of ozone in Shenzhen, a major coastal urban center in China.

View Article and Find Full Text PDF