Dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), and benzyl butyl phthalate (BBP) are used in personal and medical care products. In the ovary, antral follicles are essential for steroidogenesis and ovulation. DBP, BBP, and DEHP are known to inhibit mouse antral follicle growth and ovulation in vitro, and associate with decreased antral follicle counts in women.
View Article and Find Full Text PDFPhthalates are compounds used in consumer and medical products worldwide. Phthalate exposure in women has been demonstrated by detection of phthalate metabolites in their urine and ovarian follicular fluid. High urinary phthalate burden has been associated with reduced ovarian reserve and oocyte retrieval in women undergoing assisted reproduction.
View Article and Find Full Text PDFPhthalates are compounds used in consumer and medical products worldwide. Phthalate exposure in women has been demonstrated by detection of phthalate metabolites in their urine and ovarian follicular fluid. High urinary phthalate burden has been associated with reduced ovarian reserve and oocyte retrieval in women undergoing assisted reproduction.
View Article and Find Full Text PDFHumans are exposed to phthalates daily via items such as personal care products and medications. Reproductive toxicity has been documented in mice exposed to di-n-butyl phthalate (DBP); however, quantitative evidence of its metabolite, mono-n-butyl phthalate (MBP), reaching the mouse ovary and its effects on hepatic and ovarian biotransformation enzymes in treated mice is still lacking. Liquid chromatography/tandem mass spectrometry (LC-MS/MS) was employed to quantify MBP levels in liver, serum, and ovary from mice treated with a single or repeated exposure to the parent compound, DBP.
View Article and Find Full Text PDFPhthalates are industrial chemicals used as plasticizers in food packaging, medical devices, and toys, as well as cosmetics used primarily by women. Epidemiological studies in women and animal studies using rodents have reported associations between phthalate exposures and adverse reproductive health outcomes. Epigenetic mechanisms are thought to be involved in the ability of environmental contaminants to influence development of disease but evidence linking exposure to phthalates and uterine DNA methyltransferase activity are lacking.
View Article and Find Full Text PDFPhthalates have a history of reproductive toxicity in animal models and associations with adverse reproductive outcomes in women. Human exposure to dibutyl phthalate (DBP) occurs via consumer products (7-10 μg/kg/day) and medications (1-233 μg/kg/day). Most DBP toxicity studies have focused on high supraphysiological exposure levels; thus, very little is known about exposures occurring at environmentally relevant levels.
View Article and Find Full Text PDFPropylparaben is prevalently used in cosmetics, pharmaceuticals, and foods; yet, its direct effects on the mammalian ovary are unknown. We investigated the direct effects of propylparaben on the growth and steroidogenic function of mouse antral follicles. Antral follicles were isolated from the ovaries of Swiss mice (age: 32-42 days) and cultured in media with dimethylsulfoxide vehicle control or propylparaben (0.
View Article and Find Full Text PDFTransgenic (TAg) mice express the oncogenic virus SV40 in Mullerian epithelial cells. Female TAg mice spontaneously develop epithelial ovarian carcinoma, the most common type of ovarian cancer in women. Female TAg mice are infertile, but the reason has not been determined.
View Article and Find Full Text PDFPersonal care products (PCP) contain a myriad of chemicals generally formulated to provide a safe and beneficial use. Nonetheless, an increasing amount of laboratory animal and human studies indicate that some chemicals in PCP are associated with decreased hormone production, diminished ovarian reserve, ovarian cancer, and early pregnancy loss. The ovary is key to female fertility by providing the eggs and sex steroid hormones for fertilization and maintenance of reproductive function, respectively.
View Article and Find Full Text PDFDibutyl phthalate (DBP) is present in consumer products and the coating of some oral medications. Acetyl tributyl citrate (ATBC) has been proposed as an alternative to DBP because DBP causes endocrine disruption in animal models. Following ingestion, DBP is converted to its main metabolite mono-butyl phthalate (MBP) which has been detected in >90% of human follicular fluid samples.
View Article and Find Full Text PDFAcetyl tributyl citrate (ATBC), is a phthalate substitute used in food and medical plastics, cosmetics and toys. Although systemically safe up to 1000 mg kg day , its ability to cause reproductive toxicity in females at levels below 50 mg kg day has not been examined. This study evaluated the effects of lower ATBC exposures on female reproduction using mice.
View Article and Find Full Text PDFDi-n-butyl phthalate (DBP) is present in many beauty and medical products. Human exposure estimates range from 0.007-0.
View Article and Find Full Text PDFMono-2-ethyhexyl phthalate (MEHP) is a metabolite of a plasticizer found in many consumer products. MEHP inhibits mouse ovarian follicle growth by reducing 17β-estradiol (E2) production. Yet, whether MEHP causes follicle death (atresia) is unclear.
View Article and Find Full Text PDFMono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro.
View Article and Find Full Text PDFBisphenol A (BPA) is an endocrine disruptor that inhibits growth of mouse ovarian follicles and disrupts steroidogenesis at a dose of 438μM. However, the effects of lower doses of BPA and its mechanism of action in ovarian follicles are unknown. We hypothesized that low doses of BPA inhibit follicular growth and decrease estradiol levels through the aryl hydrocarbon receptor (AHR) pathway.
View Article and Find Full Text PDFDi-n-butyl phthalate (DBP) is present in many consumer products, such as infant, beauty, and medical products. Several studies have shown that DBP causes reproductive toxicity in rodents, but no studies have evaluated its effects on ovarian follicles. Therefore, we used a follicle culture system to evaluate the effects of DBP on antral follicle growth, cell cycle and apoptosis gene expression, cell cycle staging, atresia, and 17β-estradiol (E(2)) production.
View Article and Find Full Text PDFMono-(2-ethylhexyl) phthalate (MEHP) is the active metabolite of the most commonly used plasticizer, di-(2-ethylhexyl) phthalate, and is considered to be a reproductive toxicant. However, little is known about the effects of MEHP on ovarian antral follicles. Thus, the present study tested the hypothesis that MEHP inhibits follicle growth via oxidative stress pathways.
View Article and Find Full Text PDFThe pituitary gland is composed of hormone-producing cells essential for homeostasis and reproduction. Pituitary cells are sensitive to endocrine feedback in the adult and can have altered hormonal secretion from exposure to the endocrine disruptor bisphenol A (BPA). BPA is a prevalent plasticizer used in food and beverage containers, leading to widespread human exposure.
View Article and Find Full Text PDFBisphenol A (BPA) is an estrogenic chemical used to manufacture many commonly used plastic and epoxy resin-based products. BPA ubiquitously binds to estrogen receptors throughout the body, including estrogen receptor alpha (ESR1) in the ovary. Few studies have investigated the effects of BPA on ovarian antral follicles.
View Article and Find Full Text PDFThe persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an ovarian toxicant. These studies were designed to characterize the actions of TCDD on steroidogenesis and growth of intact mouse antral follicles in vitro. Specifically, these studies tested the hypothesis that TCDD exposure leads to decreased sex hormone production/secretion by antral follicles as well as decreased growth of antral follicles in vitro.
View Article and Find Full Text PDFMethoxychlor (MXC) and its metabolites bind to estrogen receptors (ESRs) and increase ovarian atresia. To test whether ESR alpha (ESR1) overexpressing (ESR1 OE) antral follicles are more sensitive to atresia compared to controls, we cultured antral follicles with vehicle, MXC (1-100 μg/ml) or metabolites (0.1-10 μg/ml).
View Article and Find Full Text PDFDi (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles.
View Article and Find Full Text PDFEndocrine-disrupting chemicals (EDCs) are exogenous agents with the ability to interfere with processes regulated by endogenous hormones. One such process is female reproductive function. The major reproductive organ in the female is the ovary.
View Article and Find Full Text PDF