Nitrogen (N) plays a crucial role in forage yield. However, excessive application of N fertilizers in agricultural production not only increases the production cost but also leads to serious environmental problems. Therefore, mining low-N tolerant oat germplasm is important for the sustainable development of grass and pasture.
View Article and Find Full Text PDFBackground: Oat is a dual-purpose cereal used for grain and forage. The demand of oat has been increasing as the understanding of the nutritional, ecological, and economic values of oat increased. However, the frequent lodging during the growing period severely affect the high yielding potential and the quality of the grain and forage of oat.
View Article and Find Full Text PDFThe gene family members play multiple functions in plant growth and development and were named after the first three family members found in this family, TB1 (TEOSINTE BRANCHED 1), CYCLOIDEA (CYC), and Proliferating Cell Factor 1/2 (PCF1/2). Nitrogen (N) is a crucial element for forage yield; however, over-application of N fertilizer can increase agricultural production costs and environmental stress. Therefore, the discovery of low N tolerance genes is essential for the genetic improvement of superior oat germplasm and ecological protection.
View Article and Find Full Text PDFIntroduction: Modern agriculture emphasizes the design of cropping systems using ecological function and production services to achieve sustainability. The functional characteristics of plants (grasses vs. legumes) affect changes in soil microbial communities that drive agroecosystem services.
View Article and Find Full Text PDFIntroduction: Information on the relationship between soil quality and forage yield of legume-grass mixtures in different ecological regions can guide decision-making to achieve eco-friendly and sustainable pasture production. This study's objective was to assess the effects of different cropping systems on soil physical properties, nitrogen fractions, enzyme activities, and forage yield and determine suitable legume-grass mixtures for different ecoregions.
Methods: Oats (Avena sativa L.
To evaluate the effects of temperature and lactic acid bacteria (LAB) inoculants on oat silage in Loess Plateau of China, oat was harvested at dough stage, inoculated without (Control) or with LAB inoculants Synlac I (SLI, and ) and a selected strain HT1 () and ensiled at 25°C (T25), 35°C (T35) and 45°C (T45). The fermentation quality was measured after 60 d of ensiling and the aerobic exposure was conducted at 30°C for 9 d. The results showed that control silage (stored at 25°C) had better fermentation quality than that ensiled at 35°C or 45°C.
View Article and Find Full Text PDFThe WRKY family is widely involved in the regulation of plant growth and stress response and is one of the largest gene families related to plant environmental adaptation. However, no systematic studies on the WRKY family in oat ( L.) have been conducted to date.
View Article and Find Full Text PDFOat is a main feed crop in high- altitude areas of western China, but few studies have been done on its silage making. The aim of this study was to evaluate the effect of silage additives on fermentation, aerobic stability, and nutritive value of different oat varieties (OV) grown in the Qinghai-Tibet Plateau of China. Two OV (Avena sativa L.
View Article and Find Full Text PDFA direct competitive biomimetic immunosorbent assay method based on molecularly imprinted polymer was developed for the determination of trichlorfon. A CdSe/ZnS quantum dot label was used as the marker. The hydrophilic imprinted film was synthesized directly on the surface of a 96-well plate, and characterized by Fourier-transform infrared spectroscopy and thermo-gravimetric analyses.
View Article and Find Full Text PDF