The ability to laminate and delaminate top metal contacts during the processing and testing of inverted polymer solar cells has led us to uncover the peculiar dependence of their open-circuit voltage (V(oc)) on the annealing sequence. Specifically, thermally annealing inverted polymer solar cells having bulk-heterojunction photoactive layers after top electrode deposition above 100 °C leads to lower V(oc) compared to analogous devices with unannealed photoactive layers or photoactive layers that have been annealed prior to metal electrode deposition. This reduction in V(oc), however, can be reversed when the top electrodes are replaced.
View Article and Find Full Text PDFSelf-assembled monolayers of E-stilbene-4-thiolate (SAM1), E-4'-(ethoxy)stilbene-4-thiolate (SAM2), and E-4'-(dimethylamino)stilbene-4-thiolate (SAM3) on Au(111) have been obtained from reaction of ethanol solutions of the corresponding S-acetyl derivatives with gold substrates. A combination of X-ray photoelectron spectroscopy, ellipsometry, and infrared reflection absorption spectroscopy indicates that the monolayers are dense (ca. 3.
View Article and Find Full Text PDFUsing scanning tunneling microscopy, we demonstrate that the nucleation density of Fe islands on the surface of nanoscale Pb films oscillates with the film thickness, providing a direct manifestation of the quantum size effect on surface diffusion. The Fe adatom diffusion barriers were derived to be 204+/-5 and 187+/-5 meV on a 21 and 26 monolayer (ML) Pb film, respectively, by matching the kinetic Monte Carlo simulations to the experimental island densities. The effect is further illustrated by the growth of Fe islands on wedged Pb films, where the Fe island density is consistently higher on the odd-layer films than on the even-layer films in the thickness range of 11 to 15 ML.
View Article and Find Full Text PDF