This study explores the incorporation of NbAlC and MoAlC MAX phases, known for their nano-layered structure, into polyether sulfone (PES) membranes to enhance their antifouling and permeability properties for pathogen microorganism filtration against bovine serum albumin (BSA) and Escherichia coli (E. coli). The composite membranes were characterized for their structural and morphological properties, and their performance in mitigating biofouling was evaluated.
View Article and Find Full Text PDFIn this investigation, two new thermophilic bacteria were isolated. The new isolates were characterized by 16S rRNA, biochemical, morphological, and physiological analyzes and the isolates were identified as strain Gecek20 and thermophilic strain Gecek19. Various biological activities of extracellular Ag-NPs synthesized from thermophilic strain Gecek20 and thermophilic strain Gecek19 were evaluated.
View Article and Find Full Text PDFAntimicrobial resistance to antibiotics for current bacterial infection treatments is a medical problem. 2D nanoparticles, which can be used as both antibiotic carriers and direct antibacterial agents due to their large surface areas and direct contact with the cell membrane, are important alternatives in solving this problem. This study focuses on the effects of a new generation borophene derivative obtained from MgB particles on the antimicrobial activity of polyethersulfone membranes.
View Article and Find Full Text PDFThe wastewater generated from citric acid production has a high organic loading content. The treatment and reuse of citric acid wastewater with high organic loading become extremely important. In this study, the performance of calcium hydroxide (Ca(OH)) precipitation as a low-cost and environmentally friendly pre-treatment method and aerobic membrane bioreactor (MBR) combined treatment system was investigated for the treatment of citric acid (CA) wastewater.
View Article and Find Full Text PDFPhosphorus (P) problem worries the whole world due to the increasing demand for finite and non-renewable natural phosphate resources and the inadequacy of sustainable phosphate production technologies. In this study, bio-acidification processes using waste sludge and food waste for simultaneous sustainable phosphate release and biogas production were investigated. Response surface methodology (RSM) was used for bio-acidification optimization.
View Article and Find Full Text PDFIn this research, nanoparticles derived from water extract of Centaurea solstitialis leaves were used as green adsorbent in Fenton reaction for Reactive Red 180 (RR180) and Basic Red 18 (BR18) dyes removal. At optimum operating conditions, nanoparticles proved high performance in the tested dyes removal with more than 98% of removal elimination. The free-radical scavenging, DNA nuclease, biofilm inhibition capability, antimicrobial activity, microbial cell viability, and antimicrobial photodynamic therapy activities of the iron oxide nanoparticles (FeO-NPs) derived from water and methanol extract of plant were investigated.
View Article and Find Full Text PDFThe use of synthetic dyes in the textile industry pollutes a huge amount of water. Thus, wastewater discharged from many textile companies to the receiving environment without being treated causes serious environmental and human health problems. The development of new techniques has become imperative.
View Article and Find Full Text PDFIn this study, the electrooxidation (EO) and membrane processes were used for chemical oxygen demand (COD) and total phenol (TPh) removal from wet scrubber wastewater (WSW). EO experiments were carried out using Al, Fe, SS, Ti, graphite, active carbon cloth electrodes and Box-Behnken design were used for optimization of maximum COD and TPh removal efficiency. Moreover, membrane filtration experiments were conducted to EO process using nanofiltration (NF270) and reverse osmosis membranes (SW30 and BW30).
View Article and Find Full Text PDFSustainable, effective and environmentally friendly methods are needed in wastewater treatment as quality water is necessary for a healthy life. Valorisation of solid food waste is also of great importance. This study examines the effectiveness of hydrolysed waste eggshells (HES), a green catalyst, in pistachio processing wastewater (PPWW) treatment using subcritical water oxidation (SWO).
View Article and Find Full Text PDFIn this study, synthesis of silver nanoparticles (AgNPs) was carried out utilizing the red and green parts of the pistachio hulls then their several biological activities were investigated. The DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) activities of the AgNPs synthesized from red pistachio hulls extracts (PhR-AgNPs) and green pistachio hulls extracts (PhG-AgNPs) were investigated. The DPPH scavenging capability at 200 mg/L concentration of PhR-AgNPs was around 93.
View Article and Find Full Text PDFIn this study, a hybrid process for leachate wastewater treatment including evaporation and reverse osmosis (RO) membrane or biological treatment systems was suggested. Experiments were performed on a real landfill leachate wastewater. The leachate was subjected to evaporation; as a result, a distillate was obtained containing less organic matter and less substantial amounts of other pollutants, as ammonium salts and total phenols were removed.
View Article and Find Full Text PDFIn this study, hydrochar-based-eggshell was prepared via the subcritical water medium (SCWM) and used as a catalyst in the thermally activated peroxide oxidation (TAPO) approach for crystal violet and dye bathing wastewater degradation. The catalytic activities for the raw eggshell (RES) and hydrochar-based-eggshell (HES) were compared. RES and HES were characterized using a scanning electron microscope (SEM),energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transforms infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFThis study aims to investigate the treatability of the wastewater generated from the sesame seeds dehulling process by a combination of electrochemical techniques with a membrane filtration system. Chemical oxygen demand (COD) and phenol removal performances were studied for four different cathodes material (iron (Fe), aluminum (Al), platinum (Pt), and boron-doped diamond (BDD)) at different current densities in the electrochemical treatment stage. The maximum removal efficiency was obtained when the BDD electrodes were used.
View Article and Find Full Text PDFThis study evaluates the production of hydrochars from the outer shells of the nut group (peanut, hazelnut, walnut, and pistachio) in an eco-friendly subcritical water medium (SWM) and their effects as adsorbents on the removal of crystal violet (CV) from an aqueous solution. The prepared hydrochars were characterized using Brunauer Emmett-Teller (BET) analysis, scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR), and zeta potential. The adsorption process was optimized based on pH, adsorbent dose, dye concentration, and contact time.
View Article and Find Full Text PDFIn this study, electrochemical oxidation of combed fabric dyeing wastewater was investigated using graphite electrodes. The response surface methodology (RSM) was used to design the experiments via the central composite design (CCD). The planned experiments were done to track color changes and chemical oxygen demand (COD) removal.
View Article and Find Full Text PDFThis study concerns the preparation of novel adsorbent prepared from calcium alginate bead modified with polyethyleneimine (PEI-CaAlg). The adsorption capacity of the PEI-CaAlg was examined by Remazol Brilliant Blue R (RBBR) and phosphate adsorption. PEI-CaAlg showed high removal efficiencies for RBBR (90.
View Article and Find Full Text PDFThe effect of electrochemical pre-treatment on fungal treatment of pistachio processing wastewater (PPW) was investigated. Electrocoagulation (EC) and electrooxidation (EO) were used as electrochemical pre-treatment step before fungal treatment of PPW. Aluminum (Al/Al), iron (Fe/Fe), and stainless steel (SS/SS) electrode pairs were selected as anode/cathode for EC whereas boron doped diamond (BDD/SS) was preferred as anode/cathode electrode pairs for EO experiments in this study.
View Article and Find Full Text PDF