Microvasculature consisting of endothelial cells and pericytes is the main site of injury during antibody-mediated rejection (ABMR) of renal grafts. Little is known about the mechanisms of activation of pericytes in this pathology. We have found recently that activation of Notch3, a mediator of vascular smooth muscle cell proliferation and dedifferentiation, promotes renal inflammation and fibrosis and aggravates progression of renal disease.
View Article and Find Full Text PDFA matrix therapy agent marketed as CACIPLIQ20 showed marked improvement in the healing rate of hand infections, including functional recovery. It can be used at both earlier and later stages to promote faster healing and prevent an adverse outcome.
View Article and Find Full Text PDFAcute kidney injury is a major risk factor for subsequent chronic renal and/or cardiovascular complications. Previous studies have shown that Notch3 was de novo expressed in the injured renal epithelium in the early phases of chronic kidney disease. Here we examined whether Notch3 is involved in the inflammatory response and the epithelial cell damage that typifies ischemic kidneys using Notch3 knockout mice and mice with short-term activated Notch3 signaling (N3ICD) in renal epithelial cells.
View Article and Find Full Text PDFT follicular helper cells (Tfh) are important regulators of humoral responses. Human Tfh polarization pathways have been thus far associated with Th1 and Th17 polarization pathways. How human Tfh cells differentiate in Th2-skewed environments is unknown.
View Article and Find Full Text PDFProtease regulation plays a crucial role in skin homeostasis and inflammation as revealed by the identification of loss-of-function mutations in SPINK5 (serine protease inhibitor of Kazal type 5) in Netherton sydrome (NS). SPINK5 encodes LEKTI (lympho-epithelial Kazal type related inhibitor), a multidomain serine protease inhibitor expressed in all stratified epithelia. Our laboratory has developed a number of murine models which have been instrumental in dissecting the pathogenesis of NS.
View Article and Find Full Text PDFAntibody-mediated rejection (ABMR) is a leading cause of allograft loss. Treatment efficacy depends on accurate diagnosis at an early stage. However, sensitive and reliable markers of antibody-endothelium interaction during ABMR are not available for routine use.
View Article and Find Full Text PDFNotch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression.
View Article and Find Full Text PDFUnlabelled: The sarco(endo)plasmic reticulum Ca(2+)ATPases (SERCA) system, a key regulator of calcium cycling and signaling, is composed of several isoforms. We aimed to characterize the expression of SERCA isoforms in mouse cardiovascular tissues and their modulation in cardiovascular pathologies (heart failure and/or atherosclerosis). Five isoforms (SERCA2a, 2b, 3a, 3b and 3c) were detected in the mouse heart and thoracic aorta.
View Article and Find Full Text PDFVascular smooth muscle cell (VSMC) trans-differentiation, or their switch from a contractile/quiescent to a secretory/inflammatory/migratory state, is known to play an important role in pathological vascular remodeling including atherosclerosis and postangioplasty restenosis. Several reports have established the Notch pathway as tightly regulating VSMC response to various stress factors through growth, migration, apoptosis, and de-differentiation. More recently, we showed that alterations of the Notch pathway also govern VSMC acquisition of the inflammatory state, one of the major events accelerating atherosclerosis.
View Article and Find Full Text PDFRecently, we discovered on primary cell cultures that adenylyl cyclase type 8 (AC8) was involved in the transition of rat vascular smooth muscle cells (VSMCs) to an inflammatory phenotype. Here we demonstrate, in human vessels displaying early or advanced atherosclerotic lesions, that: (a) only intimal VSMCs strongly express AC8; and (b) very few AC8-positive VSMCs were detected in the medial layer, either in atherosclerotic or healthy arteries. Furthermore, over-expressing AC8 in primary rat VSMC cultures triggered the recolonization of a wounded zone and similar results were obtained in the presence of mitomycin, a potent inhibitor of proliferation.
View Article and Find Full Text PDF