Publications by authors named "Zejun Fang"

Article Synopsis
  • E2F1 is a vital transcription factor involved in regulating the cell cycle and is often found at high levels in cancer cells.
  • Recent research indicates that E2F1 can also trigger apoptosis (cell death) under stress conditions, posing a dual role in cell survival and death.
  • This study reveals that acetylation of E2F1 at K125 during serum stress enhances its ability to promote the expression of Fas and BAX, leading to the activation of caspase-3 and apoptosis in liver cancer cells.
View Article and Find Full Text PDF

Ovarian cancer is the most common type of gynecological malignant tumor, with the highest mortality rate among female genital malignant tumors. In this study, we initially identified forkhead box F1 (FOXF1) as a potential prognostic biomarker of ovarian cancer through bioinformatics analysis. FOXF1 expression was higher in ovarian cancer tissue samples and served as an unfavorable prognostic factor.

View Article and Find Full Text PDF

Histone deacetylase 5 (HDAC5) is an enzyme that deacetylates lysine residues on the N-terminal of histones and other proteins. It has been reported that HDAC5 deacetylates p53, the critical factor regulating cell cycle, in response to cellular stress, but the transcriptional products haven't been identified. Herein, we used p53 signaling pathway qPCR-chip to determine how HDAC5-mediated deacetylation of p53 affects cell cycle.

View Article and Find Full Text PDF
Article Synopsis
  • Metastases in advanced colorectal cancer (CRC) are difficult to treat, with the Epithelial-Mesenchymal Transition (EMT) being key to the cancer's ability to spread.
  • E2F transcription factor 1 (E2F1) has been found to regulate Regulator of chromatin condensation 1 (RCCD1), which plays a role in the EMT process of CRC, as demonstrated through various experimental methods.
  • Both E2F1 and RCCD1 are highly expressed in cancer tissues and influence CRC cell behaviors like proliferation, migration, and invasion.
View Article and Find Full Text PDF

Ribonucleotide reductase (RR) is a rate-limiting enzyme that facilitates DNA replication and repair by reducing nucleotide diphosphates (NDPs) to deoxyribonucleotide diphosphates (dNDPs) and is thereby crucial for cell proliferation and cancer development. The E2F family of transcription factors includes key regulators of gene expression involved in cell cycle control. In this study, E2F8 expression was significantly increased in most cancer tissues of lung adenocarcinoma (LUAD) patients and was correlated with the expression of RRM2 through database and clinical samples analysis.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common malignant cancers. The tumor microenvironment (TME) plays an important role in tumor progression and affects the prognosis of CRC patients. However, the TME has been poorly characterized and studies aiming to identify the biomarkers or combined risk scores of CRC patients are limited.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the impact of ω-9 MUFAs in fat emulsion on serum IL-6 levels in rats with LPS-induced lung injury.
  • It aimed to explore how reducing inflammation through ω-9 MUFAs could help treat acute lung injury (ALI) and prevent the progression to acute respiratory distress syndrome (ARDS).
  • Results showed that rats treated with ω-9 MUFAs had improved survival rates and better lung health, with significantly lower levels of inflammatory markers compared to the control group.
View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is one of the most common and lethal malignancies which including colon and rectum cancer. Tripartite motif containing 55 (TRIM55) is an E3 ubiquitin ligase belonging to the TRIM family. Although the aberrant TRIM55 expression has been implicated in several tumors, its functional role, and molecular mechanisms in CRC remain unknown.

View Article and Find Full Text PDF

This study aimed to develop a self-made C-arm camera shooting locator and verify its accuracy and advantages. A total of 60 physicians and nurses from the Surgical System of Sanmen People's Hospital, Zhejiang Province, China, were randomly selected as filming operators. The C-arm machine with a self-made locator and a C-arm machine without a locator were used to measure the center of the circular plate.

View Article and Find Full Text PDF

Background: E2F1 is a transcription factor that regulates cell cycle progression. It is highly expressed in most cancer cells and activates transcription of cell cycle-related kinases. Stathmin1 and transforming acidic coiled-coil-containing protein 3 (TACC3) are factors that enhance the stability of spindle fiber.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is characterized by discrete changes in metabolic features of cancer and immune cells, with various implications. Cancer cells take up most of the available glucose to support their growth, thereby leaving immune cells with insufficient nutrients to expand. In the relative absence of glucose, T cells switch the metabolic program to lipid-based sources, which is pivotal to T-cell differentiation and activation in nutrient-stressed TME.

View Article and Find Full Text PDF

Gastric cancer (GC) is the third leading cause of cancer-associated mortality worldwide. The platinum derivative oxaliplatin is widely applied in standard GC chemotherapy but recurrence and metastasis are common in advanced GC cases due to intrinsic or induced chemoresistance. Poly(ADP-Ribose) polymerase 1 (PARP1) is an enzyme crucial for repairing DNA damage induced by platinum compounds, which undermines the effectiveness of platinum-based chemotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research shows that oxaliplatin-resistant colorectal cancer (OR-CRC) cells have higher levels of PARP-1 binding protein (PARPBP) compared to non-resistant cells.
  • Kinesin family member 18b (KIF18b) boosts the expression of PARPBP, playing a key role in maintaining the oxaliplatin resistance in these OR-CRC cells.
  • Clinical findings indicate a correlation between high levels of KIF18b and PARPBP in CRC tissues, which is associated with a worse prognosis for patients.
View Article and Find Full Text PDF

Histone deacetylase 5 (HDAC5) is a class II HDAC. Aberrant expression of HDAC5 has been observed in multiple cancer types, and its functions in cell proliferation and invasion, the immune response, and maintenance of stemness have been widely studied. HDAC5 is considered as a reliable therapeutic target for anticancer drugs.

View Article and Find Full Text PDF

Oxidative damage in retinal pigment epithelial cells (RPE) is considered to be a crucial pathogenesis of age-related macular degeneration (AMD). Although dysregulation of the DNA repair system has been found in RPE cells of AMD patients, the detailed molecular mechanisms of this dysregulation and their relationship with the intraocular microenvironment of AMD patients remain unclear. Here, we established an RPE model of HO-induced oxidative stress and found that Sirtuin 1 (Sirt1)-mediated deacetylation of E2F transcription factor 1 (E2F1) was required for oxidation resistance in RPE cells.

View Article and Find Full Text PDF

We aim to identify driving genes of colorectal cancer (CRC) through multi-omics analysis. We downloaded multi-omics data of CRC from The Cancer Genome Atlas dataset. Integrative analysis of single-nucleotide variants, copy number variations, DNA methylation and differentially expressed genes identified candidate genes that carry CRC risk.

View Article and Find Full Text PDF

E2F transcription factor 1 (E2F1) is a member of the E2F family of transcription factors. E2F1 binds to DNA with dimerization partner (DP) proteins through an E2 recognition site. The dissociation of E2F1 from retinoblastoma (Rb) protein recovers its transcriptional activity, which drives the cell cycle from the G1 to S phase.

View Article and Find Full Text PDF

We previously reported that E2F1 expression is up-regulated and positively correlated with the malignant phenotypes of colorectal cancer (CRC). However, the underlying mechanisms leading to the aberrant up-regulation of E2F1 in CRC have not been clarified. In this study, we observed that directly targets the 3'UTR of mRNA, leading to reduced E2F1 expression.

View Article and Find Full Text PDF

Platinum-based chemotherapy is still widely applied for the treatment of advanced non-small cell lung cancer (NSCLC). However, acquired chemoresistance compromises the curative effect of this drug. In this study, we found that glucose-6-phosphate dehydrogenase (G6PD), a critical enzyme of the pentose phosphate pathway, contributed to cisplatin resistance in NSCLC.

View Article and Find Full Text PDF

For decades, E2F1 has been recognized as a retinoblastoma protein (RB) binding transcription factor that regulates the cell cycle. E2F1 binds preferentially to RB and accelerates the cell cycle in most cancer cells. However, it is thought that E2F1 modulates cell proliferation in other ways as well.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a type of cancer with a mortality rate among the highest worldwide owing to its high rate of metastasis. Therefore, inflammation-associated metastasis in the development of CRC is currently a topic of considerable interest. In the present study, the pro-inflammatory cytokine interleukin-4 (IL-4) was identified to promote the epithelial-mesenchymal transition (EMT) of CRC cells.

View Article and Find Full Text PDF

Uveal melanoma (UM) is the most common primary intraocular tumor in adults, and it carries a high risk of metastasis and mortality. Various proinflammatory cytokines have been found to be significantly increased in the aqueous humor or vitreous fluid of UM patients; however, the role of these cytokines in UM metastasis remains elusive. In the present study, we found that long-term interleukin (IL)-6 exposure promoted the migration and invasion of UM cells, diminished cell-cell adhesion, and enhanced focal adhesion.

View Article and Find Full Text PDF

Aberrant expression of histone deacetylases (HDACs) has been detected in a variety of cancers, which disrupts the balance between cell proliferation and apoptosis in favor of continuous growth. A previous study demonstrated that HDAC5 contributes to the proliferation of hepatocellular carcinoma (HCC) cells, but a clear understanding of the mechanism has not yet been provided. In the present work, we found that the levels of HDAC5 were significantly higher in HCC tissues and cells than in adjacent tissues and normal hepatic cells.

View Article and Find Full Text PDF

As a third-generation platinum drug, oxaliplatin has been widely applied in colorectal cancer (CRC); however, acquired resistance to oxaliplatin has become a major obstacle. In the present study, we found that the nuclear transcription factor Y subunit beta (NFYB) and E2F transcription factor 1 (E2F1) expression levels were significantly higher in oxaliplatin-resistant DLD1 and RKO CRC (OR-CRC) cells than in non-resistant cells. Additionally, highly expressed NFYB transactivated the E2F1 gene, which is important to maintain oxaliplatin resistance in OR-CRC cells.

View Article and Find Full Text PDF

Hypoxia plays a critical role in the progression and metastasis of hepatocellular carcinoma by activating the key transcription factor, hypoxia-inducible factor-1. This study aims to identify the novel mechanisms underlying the dysregulation of hypoxia-inducible factor-1α in hepatocellular carcinoma. We found that histone deacetylase 5, a highly expressed histone deacetylase in hepatocellular carcinoma, strengthened the migration and invasion of hepatocellular carcinoma cells under hypoxia but not normoxia condition.

View Article and Find Full Text PDF