Publications by authors named "Zeju Huang"

Matrix erosion is unavoidable during the release of poorly soluble drugs from gastric floating delivery system (GFDDS), which shortens the floating time and diminishes drug release. We fabricated a core-shell system (CSS) consisting of a low-density drug-loaded shell and a floating core using multi-nozzle semi-solid extrusion (SSE) 3D printing technology. The clarithromycin (CAM) loading capacity of the shell was 81.

View Article and Find Full Text PDF

Background: The aim of this work was to develop a novel and feasible modification strategy by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-β-CD) for enhancing the biological transport efficiency of paclitaxel (PTX)-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles.

Methods: PTX-loaded 2-HP-β-CD-modified PLGA nanoparticles (2-HP-β-CD/PLGA NPs) were prepared using the modified emulsion method. Nano-characteristics, drug release behavior, in vitro cytotoxicity, cellular uptake profiles and in vivo bio-behavior of the nanoparticles were then characterized.

View Article and Find Full Text PDF

The high-drug-loaded sustained-release gastric-floating clarithromycin (CAM) tablets were proposed and manufactured via semisolid extrusion (SSE)-based 3D printing. The physical and mechanical properties, such as dimensions, weight variation, friability, and hardness, were accessed according to the quality standards of Chinese Pharmacopoeia (Ch.P).

View Article and Find Full Text PDF