Publications by authors named "Zeinab Takalloo"

Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting motor neurons. Pathological forms of Tar-DNA binding protein-43 (TDP-43), involving its mislocalisation to the cytoplasm and the formation of misfolded inclusions, are present in almost all ALS cases (97%), and ~ 50% cases of the related condition, frontotemporal dementia (FTD), highlighting its importance in neurodegeneration. Previous studies have shown that endoplasmic reticulum protein 57 (ERp57), a member of the protein disulphide isomerase (PDI) family of redox chaperones, is protective against ALS-linked mutant superoxide dismutase (SOD1) in neuronal cells and transgenic SOD1 mouse models.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a severely debilitating neurodegenerative condition that is part of the same disease spectrum as frontotemporal dementia (FTD). Mutations in the CCNF gene, encoding cyclin F, are present in both sporadic and familial ALS and FTD. However, the pathophysiological mechanisms underlying neurodegeneration remain unclear.

View Article and Find Full Text PDF

Background: Autolysate products from yeast origin are very interesting for food, feed, cosmetic, pharmaceutical, and fermentation industries. The lysis process greatly influences the quality and efficiency of the final autolysates.

Objectives: Here, we have compared four lysis methods based on autolysis, plasmolysis (with ethanol 1.

View Article and Find Full Text PDF

The inhibitory potential of an inhibitor peptide based on the pro-region of trypsin zymogen was investigated in Indianmeal moth, P. interpunctella, which is a world-wide insect pest of stored food. Five peptides were designed based on molecular docking simulations.

View Article and Find Full Text PDF

Artemin is an abundant thermostable protein in Artemia embryos and it is considered as a highly efficient molecular chaperone against extreme environmental stress conditions. The conformational dynamics of artemin have been suggested to play a critical role in its biological functions. In this study, we have investigated the conformational and functional changes of artemin under heat and oxidative stresses to identify the relationship between its structure and function.

View Article and Find Full Text PDF

Artemin is a potent molecular chaperone, which protects Artemia embryos undergoing encystment against extreme environmental stresses. In the present work, we have examined the structural changes of artemin from A. urmiana upon exposure to oxidant and heat, by using CD measurements as well as excitation-emission fluorescence spectroscopy as a powerful tool for monitoring the conformational transitions and molecular interactions in proteins.

View Article and Find Full Text PDF

Amyloid-β (Aβ) peptide and tau protein are two hallmark proteins in Alzheimer's disease (AD); however, the parameters, which mediate the abnormal aggregation of Aβ and tau, have not been fully discovered. Here, we have provided an optimum method to purify tau protein isoform 1N4R by using nickel-nitrilotriacetic acid agarose chromatography under denaturing condition. The biochemical and biophysical properties of the purified protein were further characterized using in vitro tau filament assembly, tubulin polymerization assay, circular dichroism (CD) spectroscopy and atomic force microscopy.

View Article and Find Full Text PDF

Saccharomyces cerevisiae is being used for long as a rich source of proteins, sugars, nucleotides, vitamins and minerals. Autolyzed and hydrolyzed yeast biomass has found numerous applications in the health food industry as well as livestock feeds. Here, we have compared three lysis methods for production of yeast lysates using autolysis, plasmolysis (ethyl acetate 1.

View Article and Find Full Text PDF

The effects of 17 kinds of additive mixtures have been studied on refolding and aggregation of a model protein, lysozyme. Most of the prepared mixtures were efficient in inhibiting aggregation of the protein, and, surprisingly, four novel additive mixtures, i.e.

View Article and Find Full Text PDF

Various cold-adapted organisms produce antifreeze proteins (AFPs), which prevent the freezing of cell fluids by inhibiting the growth of ice crystals. AFPs are currently being recognized in various organisms, living in extremely low temperatures. AFPs have several important applications in increasing freeze tolerance of plants, maintaining the tissue in frozen conditions and producing cold-hardy plants by applying transgenic technology.

View Article and Find Full Text PDF

Escherichia coli is a common host that is widely used for producing recombinant proteins. However, it is a simple approach for production of heterologous proteins; the major drawbacks in using this organism include incorrect protein folding and formation of disordered aggregated proteins as inclusion bodies. Co-expression of target proteins with certain molecular chaperones is a rational approach for this problem.

View Article and Find Full Text PDF

Encysted embryos of Artemia are among the most stress-resistant eukaryotes partly due to the massive amount of a cysteine-rich protein termed artemin. High number of cysteine residues in artemin and their intramolecular spatial positions motivated us to investigate the role of the cysteine residues in the chaperone-like activity of artemin. According to the result of Ellman's assay, there are nine free thiols (seven buried and two exposed) and one disulfide bond per monomer of artemin.

View Article and Find Full Text PDF

Artemin is an abundant thermostable protein in Artemia encysted embryos under environmental stresses. It is confirmed that high regulatory expression of artemin is relevant to stress resistance in this crustacean. Here, the protective role of artemin from Artemia urmiana has been investigated on survival of bacterial cells under salt and oxidative shocks.

View Article and Find Full Text PDF

Artemin is an abundant thermostable protein in Artemia encysted embryos and considered as a stress protein, as its highly regulated expression is associated with stress resistance. Artemin cDNA was previously isolated and cloned from Artemia urmiana and artemin was found as an efficient molecular chaperone in vitro. Here, co-transformation of E.

View Article and Find Full Text PDF