This study assessed the oxidative stress impacts of Ag NPs and ZnO NPs and their mixtures in zebrafish (Danio rerio). Zebrafish were exposed to sublethal concentrations of each NP and a mixture for 28 days followed by a 28-day recovery period (without NP exposure) and measurements made on hepatic levels of antioxidant enzymes (CAT, SOD, and GPx), MDA levels, expression of the genes for the Hsp70 and Hsp90, and MT, blood biochemical parameters (total protein, globulin, albumin, AST, ALT, ALP, and LDH), and genotoxicity in erythrocytes (via measurement of micronuclei (MN) and nuclear (NA) abnormalities). There was a tendency for an increase in the variation in the responses of antioxidant defense systems and there were higher MDA levels with increasing exposure concentration of Ag NPs and with increasing exposure time.
View Article and Find Full Text PDFWe assessed the acute toxicity effects (96 h) of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) and chronic (28 d) exposure to Ag NPs, including in combination with ZnO NPs. In the chronic studies, we further assessed the toxicokinetics and bioaccumulation of Ag and the resulting histopathological effects in the gill, intestine, and liver of zebrafish. Co-exposures with ZnO NPs reduced the toxicity of Ag NPs for acute (lethality) but enhanced the toxicity effects (tissue histopathology) for chronic exposures.
View Article and Find Full Text PDFNew heterogeneous catalyst was synthesized via covalent anchoring of oxovanadium(IV) complex of 5,5?-dibromobis(salicyledene)diethylenetriamine (VO[5-Br(Saldien)]) on the surface of chloro-modified graphene oxide (GO@CTS). The structure of the catalyst was investigated using different characterization techniques such as XRD, SEM, EDX, FT-IR, TG, DTA and ICP-AES analyses. The synthesized heterogeneous oxovanadium(IV) was an efficient catalyst for high yield and selective oxidation desulfurization (ODS) of dibenzothiophene (DBT) as a model oil using H2O2 as oxidant and formic acid as a promoter.
View Article and Find Full Text PDFActivity of norA efflux pump has been known as a resistance mechanism to antibiotics like ciprofloxacin in Staphylococcus aureus. This study was carried out to assess the effect of biosynthesized NiFe O @Ag nanocomposite on expression of norA gene in Staphylococcus aureus. In this experimental study, 30 clinical samples were collected from patients hospitalized at different hospitals in Guilan Province, Iran.
View Article and Find Full Text PDFIn recent years, researchers were attracted to nanomaterials components for their potential role in cancer treatment. This study aimed to develop a novel and biocompatible cobalt hydroxide (Co(OH)) nano-flakes that is functionalized by glutamic acid (Glu) and conjugated to thiosemicarbazide (TSC) for anticancer activities against human breast cancer MCF-7 cells. Physico-chemical properties of the Co(OH)@Glu-TSC nanomaterial are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, and Fourier-transform infrared (FT-IR) spectroscopy.
View Article and Find Full Text PDFGastric cancer is one of the common types of cancer around the world which has few therapeutic options. Nitrogen heterocyclic derivatives such as thiazoles are used as the basis for the progression of the drugs. The objective of this study was to synthesize the 1-((3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl) methylene)-2-(4-phenylthiazol-2-yl) hydrazine (TP) conjugating with (3-Chloropropyl) trimethoxysilane (CPTMOS)-coated FeO nanoparticles (NPs) for anti-cancer activities against gastric AGS cancer cell line.
View Article and Find Full Text PDFThe present study highlights the apoptotic activity of magnetic FeO nanoparticulates functionalized by glutamic acid and 2-pyridinecarboxaldehyde thiosemicarbazone (PTSC) toward human lung epithelial carcinoma A549 cell line. To this aim, the FeO nanoparticulates were prepared using co-precipitation method. Then, the glutamic acid and FeO nanoparticulates were conjugated to each other.
View Article and Find Full Text PDFIn this work, the authors investigated the apoptotic activities of FeO/Ag nanocomposite biosynthesised by extract against MCF-7 (human breast cancer cells). The physico-chemical properties of prepared FeO/Ag nanocomposite were studied by different spectroscopic methods. To evaluate the cytotoxic effect, MCF-7 cells were treated with different concentrations of FeO/Ag nanocomposite and examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2019
Recently, the intrinsic enzyme-like activities of some nanoscale materials known as "nanozymes" have become a growing area of interest. Nanosized spinel substituted ferrites (SFs) with general formula of MFeO, where M represents a transition metal, are among a group of magnetic nanomaterials attracting researchers' enormous attention because of their excellent catalytic performance, biomedical applications and capability for environmental remediation. Due to their unique nanoscale physical-chemical properties, they have been used to mimic the catalytic activity of natural enzymes such as peroxidases, oxidases and catalases.
View Article and Find Full Text PDFAt present, the universal health problem with Staphylococcus aureus is the emergence of multidrug-resistant strains due to the overuse of antibiotics. Drug extrusion through efflux pumps is one of the bacterial mechanisms to neutralize the bactericidal effect of antibiotics. The antibacterial activity of silver nanoparticle as well as FeO nanoparticle had been previously studied and widely described.
View Article and Find Full Text PDFDinuclear cis-dioxomolybdenum(VI) complex [{MoO(2)(Bz(2)Benzenediyldtc)}(2)] coordinated by a quadradentate dithiocarbamate (Bz(2)Benzenediyldtc(2-)=1,4-benzenediylbis(benzyldithiocarbamate)(2-)) has been prepared and characterized by elemental analysis, (13)C NMR, IR and UV-vis spectroscopy. The kinetics of the oxygen atom transfer between [{MoO(2)(Bz(2)Benzenediyldtc)}(2)] and PPh(3) was studied spectrophotometrically in CH(2)Cl(2) medium at 520 nm and four different temperatures, 288, 293, 298 and 303 K, respectively. The reaction follows second order kinetics with the rate constant k=0.
View Article and Find Full Text PDF