The design of molecules with effective anticancer properties constructed from both dually active metal complex and organic fragments is a novel trend in medicinal chemistry. This concept suggests the impact of a drug on several biological targets or the synergistic action of both fragments as a single unit. We propose that the combination of a Pd-metallocomplex fragment and an organic unit can be an interesting model for anticancer drug discovery.
View Article and Find Full Text PDFA class of cyclometalated Rh complexes [Cp*Rh(ppy)(SR)] bearing thiolate ligands, Cp* = pentamethylcyclopentadienyl, ppy = 2-phenylpyridinate, and R = pyridyl (Spy, ), pyrimidyl (SpyN, ), benzimidazolyl (Sbi, ), and benzothiazolyl (Sbt, ), were produced and identified by means of spectroscopic methods. The cytotoxicity of the Rh compounds in three different human mortal cancerous cell lines (ovarian, SKOV3; breast, MCF-7; lung, A549) and a normal lung (MRC-5) cell line were evaluated, indicating the selectivity of these cyclometalated Rh complexes to cancer cells. Complex , selected for experiment, has shown an effective inhibition of tumor growth in SKOV3 xenograft mouse model relative to control (-values < 0.
View Article and Find Full Text PDFBased on the importance of central metal complexes to interact with DNA, in this research focused on synthesis of some new water soluble Mn(II) complexes 1-4 which modified substituted in ligand at the same position with N, Me, H, and Cl. These complexes were isolated and characterized by elemental analyses, FT-IR, electrospray ionization mass spectrometry (ESI-MS) and UV-vis spectroscopy. DNA binding studies had been studied by using circular dichroism (CD) spectroscopy, UV-vis absorption spectroscopy, cyclic voltammetry (CV), viscosity measurements, emission spectroscopy and gel electrophoresis which proposed the metal buildings go about as effective DNA binders were studied in the presence of Fish-DNA (FS-DNA) which showed the highest binding affinity to DNA with hydrophobic and electron donating substituent.
View Article and Find Full Text PDFSome new water soluble complexes [N,N'-bis{5-[(triphenyl phosphonium chloride)-methyl]salicylidine}-3,4-diaminopyridine] M(ii), which are formulated as nano-[Zn(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), [Zn(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), nano-[Ni(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), [Ni(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), and [N,N'-bis{5-[(triphenyl phosphonium chloride)-methyl]salicylidine}-2,3-diaminopyridine]Ni(ii) [Ni(5-CH2PPh3-2,3-salpyr)](ClO4)2 () have been isolated and characterized by elemental analysis, FT-IR, (1)H NMR, (13)C NMR, (31)P NMR, and UV-vis spectroscopy. The morphology and size of the nano complexes were determined using FE-SEM and TEM. In vitro DNA binding studies were investigated by UV-vis absorption spectroscopy, viscosity measurements, CD spectroscopy, cyclic voltammetry, emission spectra and gel electrophoresis, which suggest that the metal complexes act as efficient DNA binders.
View Article and Find Full Text PDF