Background: Acoustic cavitation is a foundational mechanism in ultrasound therapy, primarily through inertial cavitation resulting from microbubble collapse. Sonodynamic therapy, with inertial acoustic cavitation threshold and low-dose radiation in the presence of sensitizers, may provide significant effects for cancer treatment, potentially overcoming resistance encountered with single therapies.
Methods: MCF7 breast cancer cells were subjected to sonodynamic therapy either alone or combined with ionizing radiation, gold nanoparticles coated with apigenin, and methylene blue.
Background: Magnetic resonance spectroscopy (MRS) is an imaging technique used to measure metabolic changes in the tissue. Due to the lack of evidence, MRS is not a priority in diagnosing neurodegenerative diseases because it is a relatively specialized technique that requires specialized equipment and expertise to perform and interpret. This systematic review aimed to present a comprehensive collection of MRS results in the most common neurodegenerative diseases.
View Article and Find Full Text PDFBackground: Spinal cord injury (SCI) remained one of the challenges to treat due to its complicated mechanisms. Photobiomodulation therapy (PBMT) accelerates neuronal regeneration. Cerium oxide nanoparticles (CeONPs) also eliminate free radicals in the environment.
View Article and Find Full Text PDFMesenchymal stem cells are mechano-sensitive cells with the potential to restore the function of damaged tissues. Low-intensity ultrasound has been increasingly considered as a bioactive therapeutic apparatus. Optimizing transplantation conditions is a critical aim for radiation-induced skin tissue injury.
View Article and Find Full Text PDFObjectives: The mechanical index has long been one of the main criteria used to assess the safety limits for therapeutic medical applications. However, the safety of the mechanical index parameter is considered to be unknown in male fertility, which has a very significant role in vitro conditions. In this study, the effect of cavitation interactions due to mechanical index regions was evaluated on spermatogonial stem cells.
View Article and Find Full Text PDFConsidering the use of physical and mechanical stimulation, such as low-intensity ultrasound for proliferation and differentiation of stem cells, it is essential to understand the physical and acoustical mechanisms of acoustic waves in vitro. Mechanical index is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the mechanical index was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells.
View Article and Find Full Text PDF