Plasmodium falciparum infections in malaria endemic areas often harbor multiple clones of parasites. However, the transmission success of the different genotypes within the mosquito vector has remained elusive so far. The genetic diversity of malaria parasites was measured by using microsatellite markers in gametocyte isolates from 125 asymptomatic carriers.
View Article and Find Full Text PDFBackground: Despite the devastating global impact of mosquito-borne illnesses on human health, very little is known about mosquito developmental biology. In this investigation, functional genetic analysis of embryonic salivary gland development was performed in Aedes aegypti, the dengue and yellow fever vector and an emerging model for vector mosquito development. Although embryonic salivary gland development has been well studied in Drosophila melanogaster, little is known about this process in mosquitoes or other arthropods.
View Article and Find Full Text PDFWe investigated patterns of genetic diversity of Plasmodium falciparum associated with its two main African vectors: Anopheles gambiae and Anopheles funestus. We dissected 10,296 wild-caught mosquitoes from three tropical sites, two in Cameroon (Simbock and Tibati, separated by 320 km) and one in Kenya (Rota, >2,000 km from the other two sites). We assayed seven microsatellite loci in 746 oocysts from 183 infected mosquito guts.
View Article and Find Full Text PDFHuman parvovirus B19 replicates and encapsidates its genome in the nucleus of erythroid progenitors in vivo and in vitro. We wanted to understand the determinants necessary for the nuclear transport of the major coat protein, VP2, which makes up about 96% of the viral capsid proteins. A nonconsensus basic motif, KLGPRKATGRW, necessary for the nuclear localization of VP2 was identified and shown to be able to import reporter proteins into the nucleus.
View Article and Find Full Text PDF