The plant hormone abscisic acid (ABA) is an important regulator of plant growth and development and plays a crucial role in both biotic and abiotic stress responses. ABA modulates flowering time, but the precise molecular mechanism remains poorly understood. Here we report that ABA INSENSITIVE 2 (ABI2) is the only phosphatase from the ABA-signaling core that positively regulates the transition to flowering in Arabidopsis.
View Article and Find Full Text PDFThe regulation of microRNA (miRNA) biogenesis is crucial for maintaining plant homeostasis under biotic and abiotic stress. The crosstalk between the RNA polymerase II (Pol-II) complex and the miRNA processing machinery has emerged as a central hub modulating transcription and cotranscriptional processing of primary miRNA transcripts (pri-miRNAs). However, it remains unclear how miRNA-specific transcriptional regulators recognize MIRNA loci.
View Article and Find Full Text PDFPlants use the regulation of their circadian clock to adapt to daily environmental challenges, particularly water scarcity. During drought, plants accelerate flowering through a process called drought escape (DE) response, which is promoted by the circadian clock component GIGANTEA (GI). GI up-regulates the flowering inducer gene FLOWERING LOCUS T (FT).
View Article and Find Full Text PDFArabidopsis HOS15/PWR/HDA9 repressor complex, which is similar to the TBL1/NcoR1/HDAC complex in animals, plays a well-known role in epigenetic regulation. PWR and HDA9 have been reported to interact with each other and modulate the flowering time by repressing expression, whereas HOS15 and HDA9, together with the photoperiodic evening complex, regulate flowering time through repression of GI transcription. However, the role of the HOS15/PWR/HDA9 core repressor complex as a functional unit in the regulation of flowering time is yet to be explored.
View Article and Find Full Text PDFBackground: Currently, no drug has been approved for the management of postischemic neuronal damage. Existing studies show that calcium channel blockers have neuroprotective properties, while citicoline is involved in maintaining neuronal integrity.
Purpose: This study was envisaged to investigate the effect of azelnidipine (novel calcium channel blocker) alone and in combination with citicoline (phosphatidyl-choline analogue) against ischemic brain damage in Wistar rats.