We report the results of synthesis of zinc selenide (ZnSe) nanocrystals into SiO/Si track templates formed by irradiation with 200 MeV Xe ions up to a fluence of 10 ions/cm. Zinc selenide nanocrystals were obtained by chemical deposition from the alkaline aqueous solution. Scanning electron microscopy, X-ray diffractometry, Raman and photoluminescence spectroscopy, and electrical measurements were used for characterization of synthesized ZnSe/SiO/Si nanocomposites.
View Article and Find Full Text PDFWe investigated the electronic structure of Mg-, Si-, and Zn-doped four-faceted [001]- and [110]-oriented SnO nanowires using first-principles calculations based on the linear combination of atomic orbitals (LCAO) method. This approach, employing atomic-centered Gaussian-type functions as a basis set, was combined with hybrid density functional theory (DFT). Our results show qualitative agreement in predicting the formation of stable point defects due to atom substitutions on the surface of the SnO nanowire.
View Article and Find Full Text PDFElectrochemical deposition into a prepared SiO/Si-p ion track template was used to make orthorhombic SnO vertical nanowires (NWs) for this study. As a result, a SnO-NWs/SiO/Si nanoheterostructure with an orthorhombic crystal structure of SnO nanowires was obtained. Photoluminescence excited by light with a wavelength of 240 nm has a low intensity, arising mainly due to defects such as oxygen vacancies and interstitial tin or tin with damaged bonds.
View Article and Find Full Text PDF