Bioelectronic interfaces that establish electrical communication between redox enzymes and electrodes have potential applications as biosensors, biocatalytic reactors, and biological fuel cells. These interfaces are commonly formed on gold films deposited using physical vapor deposition (PVD) or chemical vapor deposition (CVD). PVD and CVD require deposition of a primer layer, such as titanium or chromium, and require the use of expensive equipment and cannot be used on a wide range of substrates.
View Article and Find Full Text PDFBioelectronic interfaces that facilitate electron transfer between the electrode and a dehydrogenase enzyme have potential applications in biosensors, biocatalytic reactors, and biological fuel cells. The secondary alcohol dehydrogenase (2 degrees ADH) from Thermoanaerobacter ethanolicus is especially well suited for the development of such bioelectronic interfaces because of its thermostability and facile production and purification. However, the natural cofactor for the enzyme, beta-nicotinamide adenine dinucleotide phosphate (NADP+), is more expensive and less stable than beta-nicotinamide adenine dinucleotide (NAD+).
View Article and Find Full Text PDFBio-based succinate is receiving increasing attention as a potential intermediary feedstock for replacing a large petrochemical-based bulk chemical market. The prospective economical and environmental benefits of a bio-based succinate industry have motivated research and development of succinate-producing organisms. Bio-based succinate is still faced with the challenge of becoming cost competitive against petrochemical-based alternatives.
View Article and Find Full Text PDFBioelectronic interfaces that establish electrical communication between redox enzymes and electrodes have potential applications as biosensors, biocatalytic reactors, and biological fuel cells. However, these interfaces contain labile components, including enzymes and cofactors, which have limited lifetimes and must be replaced periodically to allow long-term operation. Current methods to fabricate bioelectronic interfaces do not allow facile replacement of these components, thus limiting the useful lifetime of the interfaces.
View Article and Find Full Text PDFThe secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus 39E (TeSADH) is highly thermostable and solvent-stable, and it is active on a broad range of substrates. These properties make TeSADH an excellent template to engineer an industrial catalyst for chiral chemical synthesis. (S)-1-Phenyl-2-propanol was our target product because it is a precursor to major pharmaceuticals containing secondary alcohol groups.
View Article and Find Full Text PDFThe kinetic affinity for CO(2) of phosphoenolpyruvate PEP(5) carboxykinase from Anaerobiospirillum succiniciproducens, an obligate anaerobe which PEP carboxykinase catalyzes the carboxylation of PEP in one of the final steps of succinate production from glucose, is compared with that of the PEP carboxykinase from Saccharomyces cerevisiae, which catalyzes the decarboxylation of oxaloacetate in one of the first steps in the biosynthesis of glucose. For the A. succiniciproducens enzyme, at physiological concentrations of Mn(2+) and Mg(2+), the affinity for CO(2) increases as the ATP/ADP ratio is increased in the assay medium, while the opposite effect is seen for the S.
View Article and Find Full Text PDFActinobacillus succinogenes is a promising candidate for industrial succinate production. However, in addition to producing succinate, it also produces formate and acetate. To understand carbon flux distribution to succinate and alternative products we fed A.
View Article and Find Full Text PDFAn enantioselective asymmetric reduction of phenyl ring-containing prochiral ketones to yield the corresponding optically active secondary alcohols was achieved with W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus (W110A TESADH) in Tris buffer using 2-propanol (30%, v/v) as cosolvent and cosubstrate. This concentration of 2-propanol was crucial not only to enhance the solubility of hydrophobic phenyl ring-containing substrates in the aqueous reaction medium, but also to shift the equilibrium in the reduction direction. The resulting alcohols have S-configuration, in agreement with Prelog's rule, in which the nicotinamide-adenine dinucleotide phosphate (NADPH) cofactor transfers its pro-R hydride to the re face of the ketone.
View Article and Find Full Text PDFThe benthic microbial fuel cell (BMFC) generates power by coupling oxidation of fuels naturally residing in marine sediments with reduction of oxygen in overlying waters. A central feature of BMFCs is spontaneous colonization of the anode by mineral-reducing microorganisms indigenous to marine sediments that catalyze the power-generating anodic reactions. Described here is a preliminary investigation of how the anode potential affects this feature.
View Article and Find Full Text PDFHere, we report a comparative study on the kinetic activity of various anodes of a recently described microbial fuel cell consisting of an anode imbedded in marine sediment and a cathode in overlying seawater. Using plain graphite anodes, it was demonstrated that a significant portion of the anodic current results from oxidation of sediment organic matter catalyzed by microorganisms colonizing the anode and capable of directly reducing the anode without added exogenous electron-transfer mediators. Here, graphite anodes incorporating microbial oxidants are evaluated in the laboratory relative to plain graphite with the goal of increasing power density by increasing current density.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2005
Chemically defined media allow for a variety of metabolic studies that are not possible with undefined media. A defined medium, AM3, was created to expand the experimental opportunities for investigating the fermentative metabolism of succinate-producing Actinobacillus succinogenes. AM3 is a phosphate-buffered medium containing vitamins, minerals, NH4Cl as the main nitrogen source, and glutamate, cysteine, and methionine as required amino acids.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
July 2005
Actinobacillus succinogenes can produce, via fermentation, high concentrations of succinate, an important industrial commodity. A key enzyme in this pathway is phosphoenolpyruvate carboxykinase (PCK), which catalyzes the production of oxaloacetate from phosphoenolpyruvate and carbon dioxide, with the concomitant conversion of adenosine 5'-diphosphate to adenosine 5'-triphosphate. 1.
View Article and Find Full Text PDFMeded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet
July 2005
Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet
July 2005
The 2.2 Angstroms resolution crystal structure of the enzyme phosphoenolpyruvate carboxykinase (PCK) from the bacterium Anaerobiospirillum succiniciproducens complexed with ATP, Mg(2+), Mn(2+) and the transition state analogue oxalate has been solved. The 2.
View Article and Find Full Text PDFThe effects of divalent metal cations on structural thermostability and the inactivation kinetics of homologous class II d-xylose isomerases (XI; EC 5.3.1.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2005
Pyrococcus furiosus amylopullulanase (PfAPU) belongs to glycosyl hydrolase family 57. Using sequence alignments of the known family 57 enzymes and site-directed mutagenesis, E291, D394, and E396 were identified as PfAPU putative catalytic residues. The apparent catalytic efficiencies (k(cat)/K(m)) of PfAPU mutants E291Q and D394N on pullulan were 123.
View Article and Find Full Text PDFAppl Environ Microbiol
June 2004
Both microbial iron reduction and microbial reduction of anodes in fuel cells can occur by way of soluble electron mediators. To test whether neutral red (NR) mediates iron reduction, as it does anode reduction, by Escherichia coli, ferrous iron levels were monitored in anaerobic cultures grown with amorphous iron oxide. Ferrous iron levels were 19.
View Article and Find Full Text PDFAnaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyses the reversible metal-dependent formation of oxaloacetate (OAA) and ATP from PEP, ADP and CO(2). Mutations of PEP carboxykinase have been constructed where the residues His(225) and Asp(263), two residues of the enzyme's putative Mn(2+) binding site, were altered. Kinetic studies of the His225Glu, and Asp263Glu PEP carboxykinases show 600- and 16,800-fold reductions in V(max) relative to the wild-type enzyme, respectively, with minor alterations in K(m) for Mn(2+).
View Article and Find Full Text PDFSuccinate fermentation was investigated in Escherichia coli strains overexpressing Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PEPCK). In E. coli K-12, PEPCK overexpression had no effect on succinate fermentation.
View Article and Find Full Text PDFFumarate reductase was used as a model oxidoreductase to demonstrate continuous electrical cofactor reduction-oxidation during the bioelectrochemical synthesis and detection of chemicals. The enzyme preparation was immobilized onto a graphite felt electrode that was modified with carboxymethylcellulose (CMC). Nicotinamide adenine dinucleotide (NAD), neutral red, and fumarate reductase (which contained menaquinone) were covalently linked by peptide bonds to the CMC.
View Article and Find Full Text PDFThe Thermotoga neapolitana xylose isomerase (TNXI) is extremely thermostable and optimally active at 95 degrees C. Its derivative, TNXI Val185Thr (V185T), is the most active type II xylose isomerase reported, with a catalytic efficiency of 25.1 s(-1) mM(-1) toward glucose at 80 degrees C (pH 7.
View Article and Find Full Text PDFThe adenylate kinase (AK) gene from Thermotoga neapolitana, a hyperthermophilic bacterium, was cloned and overexpressed in Escherichia coli, and the recombinant enzyme was biochemically characterized. The T. neapolitana AK (TNAK) sequence indicates that this enzyme belongs to the long bacterial AKs.
View Article and Find Full Text PDF