Publications by authors named "Zei-Tsan Tsai"

Previously, we have successfully used noninvasive magnetic resonance (MR) and bioluminescence imaging to detect and monitor mPEG-poly(Ala) hydrogel-embedded MIN6 cells at the subcutaneous space for up to 64 days. In this study, we further explored the histological evolution of MIN6 cell grafts and correlated it with image findings. MIN6 cells were incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) and then 5 × 10 cells in the 100 μL hydrogel solution were injected subcutaneously into each nude mouse.

View Article and Find Full Text PDF

Recently, we have shown that manganese magnetism-engineered iron oxide nanoparticles (MnMEIO NPs) conjugated with exendin-4 (Ex4) act as a contrast agent that directly trace implanted mouse islet β-cells by magnetic resonance imaging (MRI). Here we further advanced this technology to track implanted porcine neonatal pancreatic cell clusters (NPCCs) containing ducts, endocrine, and exocrine cells. NPCCs from one-day-old neonatal pigs were isolated, cultured for three days, and then incubated overnight with MnMEIO-Ex4 NPs.

View Article and Find Full Text PDF

To specifically detect and trace transplanted islet β-cells by magnetic resonance imaging (MRI), we conjugated manganese magnetism-engineered iron oxide nanoparticles (MnMEIO NPs) with exendin-4 (Ex4) which specifically binds glucagon-like peptide-1 receptors on the surface of β-cells. The size distribution of MnMEIO and MnMEIO-Ex4 NPs were 67.8 ± 1.

View Article and Find Full Text PDF

Neonatal pancreatic cell clusters (NPCCs) are potential tissues for the treatment of diabetes. Different from adult cells, they continuously proliferate and differentiate after transplantation. In this study, we utilized magnetic resonance imaging (MRI) to detect and monitor implanted NPCCs.

View Article and Find Full Text PDF

Recently, we demonstrated the feasibility of subcutaneous transplantation of MIN6 cells embedded in a scaffold with poly(ethylene glycol) methyl ether (mPEG)-poly(Ala) hydrogels. In this study, we further tracked these grafts using magnetic resonance (MR) and bioluminescence imaging. After being incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles and then mixed with mPEG-poly(Ala) hydrogels, MIN6 cells appeared as dark spots on MR scans.

View Article and Find Full Text PDF

Object: To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR) imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles.

Materials And Methods: After being incubated with and without CSPIO (10 µg/ml), C57BL/6 mouse islets were examined under transmission electron microscope (TEM) and their insulin secretion was measured. Cytotoxicity was examined in α (αTC1) and β (NIT-1 and βTC) cell lines as well as islets.

View Article and Find Full Text PDF

Chitosan is the deacetylated form of chitin and used in numerous applications. Because it is a good dispersant for metal and/or oxide nanoparticle synthesis, chitosan and its derivatives have been utilized as coating agents for magnetic nanoparticles synthesis, including superparamagnetic iron oxide nanoparticles (SPIONs). Herein, we demonstrate the water-soluble SPIONs encapsulated with a hybrid polymer composed of polyelectrolyte complexes (PECs) from chitosan, the positively charged polymer, and dextran sulfate, the negatively charged polymer.

View Article and Find Full Text PDF