N-staging is a determining factor for prognostic assessment and decision-making for stage-based cancer therapeutic strategies. Visual inspection of whole-slides of intact lymph nodes is currently the main method used by pathologists to calculate the number of metastatic lymph nodes (MLNs). Moreover, even at the same N stage, the outcome of patients varies dramatically.
View Article and Find Full Text PDFObjective: Tumour pathology contains rich information, including tissue structure and cell morphology, that reflects disease progression and patient survival. However, phenotypic information is subtle and complex, making the discovery of prognostic indicators from pathological images challenging.
Design: An interpretable, weakly supervised deep learning framework incorporating prior knowledge was proposed to analyse hepatocellular carcinoma (HCC) and explore new prognostic phenotypes on pathological whole-slide images (WSIs) from the Zhongshan cohort of 1125 HCC patients (2451 WSIs) and TCGA cohort of 320 HCC patients (320 WSIs).