Publications by authors named "Zehui Fang"

The single-function agents with wide-spectrum activity which tend to disturb the ecological balance of oral cavity cannot satisfy dental treatment need. A multi-functional agent with specifically targeted killing property and in situ remineralization is warranted for caries management. A novel multi-functional agent (8DSS-C8-P-113) consisting of three domains, i.

View Article and Find Full Text PDF

A protocol for visible-light-induced C-H acylation selectively at the C6 position of purine nucleosides with aldehydes under photocatalyst-free conditions was established herein. This protocol allows the green, mild, and efficient functionalization of various purine nucleosides with a broad range of alkyl and aryl aldehydes.

View Article and Find Full Text PDF

Enamel regeneration currently -is limited by our inability to duplicate artificially its complicated and well-aligned hydroxyapatite structure. The initial formation of enamel occurs in enamel organs where the ameloblasts secret enamel extracellular matrix formed a unique gel-like microenvironment. The enamel extracellular matrix is mainly composed by amelogenin and non-amelogenin.

View Article and Find Full Text PDF

Background: Dentin hypersensitivity (DH) is a common dental clinical condition presented with a short and sharp pain in response to physical and chemical stimuli. Currently no treatment regimen demonstrates long-lasting efficacy in treating DH, and unesthetic yellow tooth color is a concern to many patients with DH.

Aim: To develop a bi-functional material which can occlude dentinal tubules in-depth and remineralize dentin for long-lasting protection of the dentin-pulp complex from stimuli and bleach the tooth at the same time.

View Article and Find Full Text PDF

Enamel, the hardest tissue in the human body, has excellent mechanical properties, mainly due to its highly ordered spatial structure. Fabricating enamel-like structure is still a challenge today. In this work, a simple and highly efficient method was introduced, using the silk fibroin as a template to regulate calcium- and phosphate- supersaturated solution to regenerate enamel-like hydroxyapatite crystals on various substrates (enamel, dentin, titanium, and polyethylene) under rotary evaporation.

View Article and Find Full Text PDF

This study is aimed to investigate the relationship of the mechanism and the effect of polyphenol derivatives cross-linking collagen with polyphenol molecular structural complexity and reaction conditions of polyphenols with collagen and to present a reference for cross-linker selection. Three kinds of polyphenols were selected to cross-link collagen under nonoxidized and oxidized conditions in vitro. These polyphenols included tannic acid, which represents the most complex stereo structure and the highest number of phenolic hydroxyl groups; epigallocatechin gallate, which represents a moderately complex structure and contains fewer phenolic hydroxyl groups than tannic acid; and -2-(3,4-dihydroxylphenyl) ethyl acrylamide, which represents only one hydroxyl phenol group.

View Article and Find Full Text PDF

Although arsenic trioxide (ATO) is a well-known antileukemic drug used for acute promyelocytic leukemia treatment, the development of ATO resistance is still a big challenge. We previously reported that microRNA-204 (miR-204) was involved in the regulation of acute myeloid leukemia (AML) cell apoptosis, but its role in chemoresistance is poorly understood. In the present study, we showed that miR-204 was significantly increased in AML cells after ATO treatment.

View Article and Find Full Text PDF

Dental caries is primarily caused by pathogenic bacteria infection, and Streptococcus mutans is considered a major cariogenic pathogen. Moreover, antimicrobial peptides have been considered an alternative to traditional antibiotics in treating caries. This study aimed to design a tooth-binding antimicrobial peptide and evaluate its antimicrobial efficacy against S.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is one of the most common hematological malignancies all around the world. MicroRNAs have been determined to contribute various cancers initiation and progression, including AML. Although microRNA-204 (miR-204) exerts anti-tumor effects in several kinds of cancers, its function in AML remains unknown.

View Article and Find Full Text PDF

The aim of the present study was to evaluate the association between computed tomography (CT) images and the pathological observations of non-Hodgkin lymphoma (NHL) patients with peritoneal, omental and mesenteric involvement. In total, 26 patients suffering from an NHL with peritoneal, omental or mesenteric involvement were reviewed retrospectively, and the observed CT scan characteristics were analyzed. In addition, associations among the CT scan characteristics and the NHL subtypes, including diffuse large B-cell, mantle cell, follicular cell and T-cell lymphoma, were evaluated.

View Article and Find Full Text PDF

Hiwi, a human homologue of the Piwi family, plays an important role in stem cell self-renewal and is overexpressed in various human tumors. This study aimed to determine whether an RNA interference-based strategy to suppress Hiwi expression could inhibit tumor growth in a xenograft mouse model. A rare population of SSCloAldebr cells was isolated and identified as lung cancer stem cells in our previous study.

View Article and Find Full Text PDF

The aim of this study was to investigate the effect of HiWi gene silencing on lung cancer tumor stem cell proliferation and apoptosis using gene transfection and RNA interference. Moreover, we examined the feasibility of using the HiWi gene as a molecular target for the inhibition of lung cancer tumor stem cells (TSCs). shRNA eukaryotic expression vectors, pGenesil-2-HiWi1, pGenesil-2-HiWi2263 and pGenesil-2-control, targeting the HiWi gene were constructed.

View Article and Find Full Text PDF