Publications by authors named "Zehua Ji"

This study introduces a novel Cardiac Electric Vector Simulation Model (CEVSM) to address the computational inefficiencies and low fidelity of traditional electrophysiological models in generating electrocardiograms (ECGs). Our approach leverages CEVSM to efficiently produce reliable ECG samples, facilitating data augmentation essential for the computer-aided diagnosis of myocardial infarction (MI). Significantly, experimental results show that our model dramatically reduces computation time compared to conventional models, with the self-adapting regression transformation matrix method (SRTM) providing clear advantages.

View Article and Find Full Text PDF

Geopolymer solidification/stabilization technology has developed rapidly in the remediation field of heavy metal-contaminated soil. However, geopolymers exhibit low anionic heavy metal immobilization efficiency due to their electronegativity and alkali activation characteristics. This study constructed a one-part blast furnace slag-based geopolymer system using landfill leachate concentrate (LLC) as chlorine and humic acid sources and achieved the solidification/stabilization of cations (Cd, Cu, Hg, and Pb) and anions (Sb and As) in the antimony mine soils (AMS).

View Article and Find Full Text PDF

Thorough nitrate removal from reclaimed water by biological techniques without carbon sources is difficult. Flexible, controllable electrochemical nitrate reduction is widely researched. Herein, ultrathin CoO nanosheets were constructed through amino group induction and orientation.

View Article and Find Full Text PDF

Phosphorus (P) in sediments plays an important role in shallow lake ecosystems and has a major effect on the lake environment. The mobility and bioavailability of P primarily depend on the contents of different P forms, which in turn depend on the sedimentary environment. Here, sediment samples from Baiyangdian (BYD) lake were collected and measured by the Standards, Measurements, and Testing procedure and Phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR) to characterize different P forms and their relationships with sediment physicochemical properties.

View Article and Find Full Text PDF

Under the influence of environmental change, disturbance and other external conditions, sediments release internal nutrients to the overlying water and become a contamination source in the lake. Complex habitat systems provide a unique opportunity for determining the influences of environmental changes in lakes. In this study, Baiyangdian Lake (BYDL) was divided into different habitat systems (connected water areas, river courses, reed fields, lotus ponds, fishponds, farmland, and thorps) based on the influence of natural and artificial activities.

View Article and Find Full Text PDF

Persulfate activation is an efficient advanced oxidation process for water treatment. However, many catalyst materials make their preparation methods and raw materials very complicated and expensive while pursuing high-efficiency catalytic effects. In this research, a novel Co-modified micro/nano geopolymer (Co-MNG) material was prepared from solid waste using a mechanochemical method.

View Article and Find Full Text PDF

In order to obtain an adsorbent-photocatalyst with low-cost, strong stability and great reusability/recyclability, a waste-based and CdS-loaded hierarchically porous geopolymer (HPG) was prepared by facile synthesis. The adsorption-photocatalysis ability, reusability, and stability of HPG under different conditions were determined. Results indicated that HPG showed better adsorption-photocatalysis performance for organic dyes under alkaline environment, and it remained a high adsorption-photocatalysis efficiency after used for five times.

View Article and Find Full Text PDF

With the expansion of urbanisation, the total amount of solid waste produced by urban residents has been increasing, and the problem of municipal solid waste disposal has also been aggravated. Landfill leachate treatment technologies could be divided into three categories: biological, physical and advanced oxidation treatment technology. Among them, advanced oxidation treatment technology has a good effect on the treatment of landfill leachate with little secondary pollution and has excellent application potential.

View Article and Find Full Text PDF

Landfill leachate concentrate (LLC) is a highly toxic wastewater that contains many refractory contaminants. One of the technical and economic treatment methods is solidification/stabilization (S/S), where the contaminants of LLC can be sealed in one step to achieve zero wastewater discharge. This study presents the S/S of LLC contaminants using solid alkali-activated geopolymers prepared from blast furnace slag (BFS) and powdery sodium silicate.

View Article and Find Full Text PDF

Anthropogenic activities significantly influence the lake environment and are reflected by the element contents in sediments/soils. The lake fragmentation provides a unique opportunity for comparing the influences of natural/anthropogenic activities of different wetlands systems. In this study, a complex and fragmented lake was investigated, and sediment/soil samples were collected from different systems.

View Article and Find Full Text PDF

Constructed wetlands (CWs) are economical, efficient, and sustainable wastewater treatment method. Substrates in CWs inextricably link with the other key components and significantly influence the performance and sustainability of CWs. Gradually, CWs have been applied to treat more complex contaminants from different fields, thus has brought forward new demand on substrates for enhancing the performance and sustainability of CWs.

View Article and Find Full Text PDF

Core-shell structured photoresponsive molecularly imprinted polymers were developed for the determination of sulfamethazine in milk samples. The photoresponsive imprinted polymers were prepared with polymethyl methacrylate containing a mass of ester groups as core, sulfamethazine as template molecules, self-synthesized water-soluble 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid as a photoresponsive monomer, and ethylene dimethacrylate as cross-linker. Interestingly, the imprinted polymer can specifically adsorb sulfamethazine under dark and 440 nm irradiation, and release it at 365 nm.

View Article and Find Full Text PDF

Herein, a novel magnetic calcium-rich biochar (MCRB), prepared by loading FeO nanoparticles (FeO NPs) on crab shell-derived biochar, was studied for remediation of arsenic and lead co-contamination. Characteristics of the MCRB demonstrated that FeO NPs adhered on the biochar matrix uniformly. Batch experiments on the effects of pH, contact time and initial concentrations revealed that for both metals, removal by the MCRB was pH-dependent with an optimal pH of 6, and that the MCRB had a strong ability for removing arsenic and lead with maximum removal capacities of 15.

View Article and Find Full Text PDF

In this study, a composite geopolymer based on solid wastes (drinking water treatment residue (DWTR) and granulated blast furnace slag (GBFS)) were used in immobilization of heavy metals cations (Cd, Pb and Zn) and anions (AsO and CrO). For evaluating the immobilization effect for heavy metals, the mechanical strength and leaching properties of geopolymers were investigated. Meanwhile, different characterization methods were used to research the immobilization mechanisms.

View Article and Find Full Text PDF

Baiyangdian Lake (BYDL) is the largest plant-dominated freshwater wetland in the North China Plain. It plays an important role in supporting the construction of Xiongan New Area. Heavy metals contents (As, Cd, Cu, Cr, Ni, Pb, and Zn) in the sediments from BYDL are investigated to determine their spatial distribution and potential ecological risk in this study.

View Article and Find Full Text PDF

Drinking water treatment residue (DWTR) and municipal waste incineration bottom ash (BA) have been traditionally considered as solid waste. With the development of urbanization, their subsequent treatment and resource regeneration need to be further researched. In this work, a composite geopolymer with BA and DWTR was successfully synthesized and applied in the immobilization of Cd, Pb and Zn.

View Article and Find Full Text PDF

Baiyangdian Lake has been the ecological foundation of the Xiongan New Area, a newly developing economic zone in northern China since 2017, meaning that it is increasingly significant to recognize the contamination of the lake. In this work, the spatial distribution and ecological risk of heavy metals in the lake sediments were examined based on field investigation, multivariate statistical analyses and X-ray diffraction techniques (XRD). The results showed that the heavy metals in sediments pose moderate to high risks in most of the sample sites.

View Article and Find Full Text PDF

Geopolymer (GP) is a novel aluminosilicate inorganic polymer, and it possesses excellent characteristics in application of various fields, and its advantages have attracted worldwide attention. Based on the Citespace software, the bibliometric analysis combined with the visualization analysis on GP was summarized on the publications that extracted from Web of Science (WOS) from 1990 to 2017. The analysis results demonstrate that the research on GP develops rapidly in the last years, and the GP have already possessed a degree of application value in several engineering fields.

View Article and Find Full Text PDF