Publications by authors named "Zehua Chen"

Owing to the predominant merit of tunable bandgaps, tin-lead mixed perovskites have shown great potentials in realizing near-infrared optoelectronics and are receiving increasing attention. However, despite the merit, there is still a lack of fundamental understanding of the bandgap variation as a function of Sn/Pb ratio, mainly because the films are easy to segregate in terms of both composition and phase. Here, we report a fully stoichiometric synthesis of monocrystalline FAPbSnI nanocrystals as well as their atomic-scale imaging.

View Article and Find Full Text PDF

Hydrogen-atom transfer is crucial in a myriad of chemical and biological processes, yet the accurate and efficient description of hydrogen-atom transfer reactions and kinetic isotope effects remains challenging due to significant quantum effects on hydrogenic motion, especially tunneling and zero-point energy. In this paper, we combine transition state theory (TST) with the recently developed constrained nuclear-electronic orbital (CNEO) theory to propose a new transition state theory denoted CNEO-TST. We use CNEO-TST with CNEO density functional theory (CNEO-DFT) to predict reaction rate constants for two prototypical gas-phase hydrogen-atom transfer reactions and their deuterated isotopologic reactions.

View Article and Find Full Text PDF

Histia rhodope (Cramer) (Lepidoptera: Zygaenidae) is one of the most destructive defoliating pests of the landscape tree Bischofia polycarpa (Levl.) S in China and other Southeast Asian regions, posing a critical threat to urban landscapes and their ecological benefits. This pest has shown a trend of northward range shift in recent years in China, making it urgent to understand its potential distribution.

View Article and Find Full Text PDF

An accurate assessment of the electrodeposition mechanism is essential for evaluating the electrochemical stability and reversibility of the metal anodes. Multiple strategies aimed at uniform Zn deposition have been extensively reported, yet it is challenging to clarify the Zn crystal growth regularity and activity due to the obscured physicochemical properties of as-deposited Zn. Herein, we present a protocol for elucidating the controlled epitaxial growth process of Zn crystals and quantifying their surface electrochemical activity using scanning electrochemical microscopy.

View Article and Find Full Text PDF

Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN).

View Article and Find Full Text PDF

Wearable heart monitors are crucial for early diagnosis and treatment of heart diseases in non-clinical settings. However, their long-term applications require skin-interfaced materials that are ultrasoft, breathable, antibacterial, and possess robust, enduring on-skin adherence-features that remain elusive. Here, we have developed multifunctional porous soft composites that meet all these criteria for skin-interfaced bimodal cardiac monitoring.

View Article and Find Full Text PDF
Article Synopsis
  • In gastric cancer treatment, cancer-associated fibroblasts (CAF) affect how well immune checkpoint inhibitors work by altering PD-L1 expression, although the exact processes behind this are not fully understood.
  • The study explored the connection between CAF and PD-L1 using various scientific methods, revealing that CAF releases lysyl oxidase (LOX) which activates the TGFβ signaling pathway in cancer cells, leading to increased IGF1 expression.
  • Higher IGF1 levels contribute to cancer cell migration and changes in metabolism, while lactate build-up enhances histone modifications that promote PD-L1 transcription, suggesting CAF may reduce the effectiveness of PD-1/PD-L1 therapies in gastric cancer.
View Article and Find Full Text PDF

The assignment of the hydrogen bonded O-H stretch vibration in the proline matrix IR spectrum has sparked controversy. Employing constrained nuclear electronic orbital methods, we provide a clear assignment that the vibrational frequency drops to near 3000 cm-1 as a result of the interplay between electronic effects, nuclear quantum effects, and matrix effects.

View Article and Find Full Text PDF

Porous soft bioelectronics have attracted significant attention due to their high breathability, long-term biocompatibility, and other unique features inaccessible in nonporous counterparts. However, fabricating high-quality multimodal bioelectronic components that operate stably under strain on porous substrates, along with integrating microfluidics for sweat management, remains challenging. In this study, cellulose nanofibrils (CNF) are explored, biomass-derived sustainable biomaterials, as nanofibril interfaces with unprecedented interfacial robustness to enable high-quality printing of strain-resilient bioelectronics on porous substrates by reducing surface roughness and creating mechanical heterogeneity.

View Article and Find Full Text PDF

Summary: Sketching technologies have recently emerged as a promising solution for real-time, large-scale phylogenetic analysis. However, existing sketching-based phylogenetic tools exhibit drawbacks, including platform restrictions, deficiencies in tree visualization, and inherent distance estimation bias. These limitations collectively impede the overall convenience and efficiency of the analysis.

View Article and Find Full Text PDF

Cleft palate presents multifaceted challenges impacting speech, hearing, appearance, and cognition, significantly affecting patients' quality of life (QoL). While surgical advancements aim to restore function and improve appearance, traditional clinical measures often fail to comprehensively capture patients' experiences. Patient-reported outcomes measure (PROMs) have emerged as crucial tools in evaluating QoL, offering insights into various aspects such as esthetic results, speech function, and social integration.

View Article and Find Full Text PDF

Background: Eravacycline (ERV) is a novel synthetic fluorocycline antibiotic with broad-spectrum antibacterial efficacy against pathogens. This study sought to investigate ERV's effectiveness and safety in treating Gram-negative pathogens (GNPs) infections.

Methods: We conducted a comprehensive search of PubMed, Cochrane Library, Embase, Web of Science, and ClinicalTrials.

View Article and Find Full Text PDF

Over the past 18 years, green tides have persistently occurred in the Yellow Sea. Micropropagules of these algae are key to bloom formation, yet their species composition and succession during dissipation remain underexplored. During the dissipation process of accumulated green tide algae, a large number of micropropagules are released.

View Article and Find Full Text PDF

In this paper, we conduct a comprehensive investigation into PVA fiber modified with SiO to improve the mechanical properties of oil-well cements. Specifically, SiO was coated onto the surface of polyvinyl alcohol fiber (PVAF) as its silicon source via a sol-gel process by using tetraethyl orthosilicate (TEOS), while hydrochloric acid and ammonia were respectively used as the catalyst in the sol (hydrolysis) and the gel (condensation) processes. The PVAF microstructure was then characterized with the scanning electron microscope (SEM), while the effects of the modified PVAF on both mechanical and rheological properties of oil-well cements were examined.

View Article and Find Full Text PDF

Background: Rehabilitation after total knee arthroplasty (TKA) has become an indispensable part of the treatment strategy for degenerative joint disease. Despite some current research demonstrating efficacy of transcutaneous electrical acupoint stimulation (TEAS) for post-TKA rehabilitation, the evidence is not conclusive.

Objective: To systematically assess the evidence supporting TEAS for rehabilitation after TKA.

View Article and Find Full Text PDF

Diabetes mellitus is a disorder that affects lipid metabolism. Abnormalities in the lipid droplets (LDs) can lead to disturbances in lipid metabolism, which is a significant feature of diabetic patients. Nevertheless, the correlation between diabetes and the polarity of LDs has received little attention in the scientific literature.

View Article and Find Full Text PDF

Recurrent somatic mutations in the BRG1/BRM-associated factor (BAF) chromatin remodeling complex subunit ARID1A occur frequently in advanced urothelial, endometrial, and ovarian clear cell carcinomas, creating an alternative chromatin state that may be exploited therapeutically. The histone methyltransferase EZH2 has been previously identified as targetable vulnerability in the context of ARID1A mutations. In this study, we describe the discovery of tulmimetostat, an orally available, clinical stage EZH2 inhibitor, and it elucidates the aspects of its application potential in ARID1A mutant tumors.

View Article and Find Full Text PDF

Two-dimensional (2D) organic-inorganic hybrid iodide perovskites have been put forward in recent years as stable alternatives to their three-dimensional (3D) counterparts. Using first-principles calculations, we demonstrate that equilibrium concentrations of point defects in the 2D perovskites PEAPbI, BAPbI, and PEASnI (PEA, phenethylammonium; BA, butylammonium) are much lower than in comparable 3D perovskites. Bonding disruptions by defects are more destructive in 2D than in 3D networks, making defect formation energetically more costly.

View Article and Find Full Text PDF

Realizing the full potential of stretchable bioelectronics in wearables, biomedical implants and soft robotics necessitates conductive elastic composites that are intrinsically soft, highly conductive and strain resilient. However, existing composites usually compromise electrical durability and performance due to disrupted conductive paths under strain and rely heavily on a high content of conductive filler. Here we present an in situ phase-separation method that facilitates microscale silver nanowire assembly and creates self-organized percolation networks on pore surfaces.

View Article and Find Full Text PDF

Background: An optimized fit of the tibial component to the resection platform and correct rotational alignment are critical for successful total knee arthroplasty (TKA). However, there remains controversy regarding the superiority of symmetric tibial component versus asymmetric tibial component. The objective of this systematic review and meta-analysis was to evaluate the current evidence for comparing the coverage and rotation of asymmetrical and symmetrical tibial component.

View Article and Find Full Text PDF

The utilization of polyethylene terephthalate (PET) has caused significant and prolonged ecological repercussions. Enzymatic degradation is an environmentally friendly approach to addressing PET contamination. Hydrolysis of mono(2-hydroxyethyl) terephthalate (MHET), a competitively inhibited intermediate in PET degradation, is catalyzed by MHET degrading enzymes.

View Article and Find Full Text PDF

In smart cities, bicycle-sharing systems have become an essential component of the transportation services available in major urban centers around the globe. Due to environmental sustainability, research on the power-assisted control of electric bikes has attracted much attention. Recently, fuzzy logic controllers (FLCs) have been successfully applied to such systems.

View Article and Find Full Text PDF

Background: Due to the complex histological type and anatomical structures, there has been considerable debate on the classification of adenocarcinoma of the esophagogastric junction (AEG), especially Siewert II AEG. Furthermore, neither the American Joint Committee on Cancer (AJCC) 7th tumor-node-metastasis (TNM) [esophageal adenocarcinoma (E) or gastric cancer (G)] nor the AJCC 8th TNM (E or G) accurately predicted the prognosis of patients with Siewert II AEG.

Objective: This study aimed to investigate the factors influencing the survival and prognosis of patients with Siewert II AEG and establish a new and better prognostic predictive model.

View Article and Find Full Text PDF

The perovskite CsPbBr exhibits an unusual nonmonotonic dependence of the band gap on increasing pressure to about 2.0 GPa as compared to conventional semiconductors. Using the first-principles calculation method, we show that under pressure, isotropic volume deformation induces considerable compression of the Pb-Br bond length and thus an enhanced interaction between atomic orbitals of the antibonding valence band maximum states and the mostly nonbonding conduction band minimum states, resulting in a monotonic decrease in the band gap.

View Article and Find Full Text PDF

Kohn-Sham density functional theory has been the most popular method in electronic structure calculations. To fulfill the increasing accuracy requirements, new approximate functionals are needed to address key issues in existing approximations. It is well known that nonlocal components are crucial.

View Article and Find Full Text PDF