Publications by authors named "Zehnacker A"

Article Synopsis
  • The study examines the complexes formed between 18-crown-6-tetracarboxylic acid (18C6TA) and the two enantiomers of protonated tyrosine (L- and D-Tyr) using mass spectrometry, laser spectroscopy, and DFT calculations in a cryogenic ion trap.
  • Spectra reveal multiple isomers for each complex, with some isomers capable of interconverting under IR irradiation, while conformer-selective vibrational spectroscopy shows all structures featuring an internally hydrogen-bonded folded arrangement of the crown ether.
  • Complexes with L-Tyr display two NH…O interactions with the ether's oxygen and additional hydrogen bonds, while D-Tyr complexes are more flexible,
View Article and Find Full Text PDF

The structure and clustering propensity of a chiral derivative of -1,2-cyclohexanediol, namely, 1-phenyl--1,2-cyclohexanediol (-PCD), has been studied under supersonic expansion conditions by combining laser spectroscopy with quantum chemistry calculations. The presence of the phenyl substituent induces conformational locking relative to -1,2-cyclohexanediol (-CD), and only one conformer of the bare molecule is observed by both Raman and IR-UV double resonance spectroscopy. The homochiral preference inferred for the dimer formation at low enough temperature is in line with the formation of a conglomerate in the solid state.

View Article and Find Full Text PDF

Conformational flexibility and chirality both play a key role in molecular recognition. It is therefore very useful to develop spectroscopic methods that simultaneously probe both properties. It has been theoretically predicted that photoelectron circular dichroism (PECD) should be very sensitive to conformational isomerism.

View Article and Find Full Text PDF

Polarizable force fields are an essential component for the chemically accurate modeling of complex molecular systems with a significant degree of fluxionality, beyond harmonic or perturbative approximations. In this contribution we examine the performance of such an approach for the vibrational spectroscopy of the alanine amino acid, in the gas and condensed phases, from the Fourier transform of appropriate time correlation functions generated along molecular dynamics (MD) trajectories. While the infrared (IR) spectrum only requires the electric dipole moment, the vibrational circular dichroism (VCD) spectrum further requires knowledge of the magnetic dipole moment, for which we provide relevant expressions to be used with polarizable force fields.

View Article and Find Full Text PDF

An achiral chromophore can acquire a chiral spectroscopic signature when interacting with a chiral environment. This so-called induced chirality is documented in electronic or vibrational circular dichroism, which arises from the coupling between electric and magnetic transition dipoles. Here, we demonstrate that a chiroptical response is also induced within the electric dipole approximation by observing the asymmetric scattering of a photoelectron ejected from an achiral chromophore in interaction with a chiral host.

View Article and Find Full Text PDF

Alkali metal complexes of cyclic dipeptide cyclo Tyr-Tyr have been studied under cryogenic ion trap conditions. Their structure was obtained by combining Infra-Red Photo-Dissociation (IRPD) and quantum chemical calculations. The structural motif strongly depends on the relative chirality of the tyrosine residues.

View Article and Find Full Text PDF

The hydrogen-bonded complexes between 2-naphthol (or β-naphthol) and anisole are explored by detecting their IR absorption in the OH stretching range as well as their UV absorption by means of laser-induced fluorescence and resonance-enhanced two-photon UV ionisation. For the more stable and the metastable conformations of the OH group in 2-naphthol, hydrogen bonding to the oxygen atom of anisole is consistently detected in different supersonic jet expansions. Alternative hydrogen bonding to the aromatic ring of anisole remains elusive, although the majority of state-of-the-art hybrid DFT functionals with London dispersion correction and - less surprisingly - MP2 wavefunction theory predict it to be slightly more stable at zero-point level, unless three-body dispersion correction is added to the B3LYP-D3(BJ) approach.

View Article and Find Full Text PDF

Solid-State Vibrational Circular Dichroism (VCD) can be used to determine the absolute structure of chiral crystals, but its interpretation remains a challenge in modern spectroscopy. In this work, we investigate the effect of a twofold screw axis on the solid-state VCD spectrum in a combined experimental and theoretical analysis of P2 crystals of (S)-(+)-1-indanol. Even though the space group is achiral, a single proper symmetry operation has an important impact on the VCD spectrum, which reflects the supramolecular chirality of the crystal.

View Article and Find Full Text PDF

Two diastereomers of the protonated diketopiperazine (DKP) dipeptide cyclo(Tyr-Tyr), namely, cyclo(LTyr-LTyr)H and cyclo(LTyr-DTyr)H, are studied in a cryogenic ion trap by means of IR photodissociation spectroscopy combined with quantum chemical calculations. The two diastereomers have similar structures in which one of the rings is folded over the DKP ring and the other one is extended in a trans geometry, allowing a strong OH···π interaction to take place. This contrasts to the observation of a stacked geometry for neutral cyclo(LTyr-LTyr) only under supersonic expansion conditions that do not exist for cyclo(LTyr-DTyr).

View Article and Find Full Text PDF

The protonated dimers of the diketopiperazine dipeptide cyclo (LPhe-LHis) and cyclo (LPhe-DHis) are studied by laser spectroscopy combined with mass spectrometry to shed light on the influence of stereochemistry on the clustering propensity of cyclic dipeptides. The marked spectroscopic differences experimentally observed in the hydride stretch region are well accounted for by the results of DFT calculations. Both diastereomeric protonated dimers involve a strong ionic hydrogen bond from the protonated imidazole ring of one monomer to the neutral imidazole nitrogen of the other.

View Article and Find Full Text PDF

Chirality plays a fundamental role in the molecular recognition processes. Molecular flexibility is also crucial in molecular recognition, allowing the interacting molecules to adjust their structures and hence optimize the interaction. Methods probing simultaneously chirality and molecular conformation are therefore crucially needed.

View Article and Find Full Text PDF

The infrared (IR) absorption and vibrational circular dichroism (VCD) spectra of an intramolecularly hydrogen-bonded chiral amino-alcohol, (1S,2R)-(-)-cis-1-amino-2-indanol, are studied in DMSO-d . The spectra are simulated at the density functional theory (DFT) level within the frame of the cluster-in-the-liquid model. Both IR and VCD spectra show a clear signature of the formation of intermolecular hydrogen bonds at the detriment of the intramolecular OH … N interaction present in the isolated molecule.

View Article and Find Full Text PDF

We introduce a new theoretical formalism to compute solid-state vibrational circular dichroism (VCD) spectra from molecular dynamics simulations. Having solved the origin-dependence problem of the periodic magnetic gauge, we present IR and VCD spectra of (1,2)--1,2-cyclohexanediol obtained from first-principles molecular dynamics calculations and nuclear velocity perturbation theory, along with the experimental results. Because the structure model imposes periodic boundary conditions, the common origin of the rotational strength has hitherto been ill-defined and was approximated by means of averaging multiple origins.

View Article and Find Full Text PDF

In addition to the classical N-H⋯O[double bond, length as m-dash]C non-covalent interaction, less conventional types of hydrogen bonding, such as N-H⋯S, may play a key role in determining the molecular structure. In this work, using theoretical calculations in combination with spectroscopic analysis in both gas phase and solution phase, we demonstrate that both these H-bonding modes exist simultaneously in low-energy conformers of capped derivatives of Attc, a thietane α-amino acid. 6-Membered ring inter-residue N-H⋯S interactions (C6), assisted by hyperconjugation between the thietane ring and the backbone, combine with 5-membered ring intra-residue backbone N-H⋯O[double bond, length as m-dash]C interactions (C5) to provide a C5-C6 feature that stabilizes a planar geometry in the monomer unit.

View Article and Find Full Text PDF

Solvation effects are essential for defining the shape of vibrational circular dichroism (VCD) spectra. Several approaches have been proposed to include them into computational models for calculating VCD signals, in particular those resting on the "cluster-in-a-liquid" model. Here we examine the capabilities of this ansatz on the example of flexible (1S,2S)-trans-1-amino-2-indanol solvated in dimethyl sulfoxide (DMSO).

View Article and Find Full Text PDF

Complexes of permethylated β-cyclodextrin (β-MCD) with the two enantiomers of protonated tyrosine (l- and d-TyrH) are studied by cryogenic ion trap infrared photo-dissociation spectroscopy. The vibrational spectra in the OH/NH stretch and fingerprint regions are assigned based on density functional theory calculations. The spectrum of both l- and d-TyrH complexes contains features characteristic of a first structure with ammonium and acid groups of the amino acid simultaneously interacting with the β-MCD, the phenolic OH remaining free.

View Article and Find Full Text PDF

The solid-state structure of LL/DD or LD/DL diphenylalanine diluted in KBr pellets is studied by infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy. The structure depends on the absolute configuration of the residues. The natural LL diphenylalanine exists as a mixture of neutral and zwitterionic structures, depending on the humidity of the sample, while mostly the zwitterion is observed for LD diphenylalanine whatever the experimental conditions.

View Article and Find Full Text PDF

By a combination of linear FTIR and Raman jet spectroscopy, racemic trans-1,2-cyclohexanediol is shown to form an energetically unrivalled S4-symmetric heterochiral dimer in close analogy to 1,2-ethanediol. Analogous experiments with enantiopure trans-1,2-cyclohexanediol reveal the spectral signature of at least three unsymmetric homochiral dimers. A comparison to signal-enhanced spectra of 1,2-ethanediol and to calculations uncovers at least three transiently homochiral dimer contributions as well.

View Article and Find Full Text PDF

The conformational landscape of the diketopiperazine (DKP) dipeptide built on tyrosine and proline, namely, cyclo Tyr-Pro, is studied by combining resonance-enhanced multiphoton ionization, double resonance infrared ultraviolet (IR-UV) spectroscopy, and quantum chemical calculations. Despite the geometrical constraints due the two aliphatic rings, DKP and proline, cyclo Tyr-Pro is a flexible molecule. For both diastereoisomers, cyclo LTyr-LPro and cyclo LTyr-DPro, two structural families coexist under supersonic jet conditions.

View Article and Find Full Text PDF

The effect of complexation with sulfuric acid on the photo-dissociation of protonated Cinchona alkaloids, namely cinchonidine (Cd), quinine (Qn) and quinidine (Qd), is studied by combining laser spectroscopy with quantum chemical calculations. The protonated complexes are structurally characterized in a room-temperature ion trap by means of infra-red multiple photon dissociation (IRMPD) spectroscopy in the fingerprint and the ν(XH) (X = C, N, O) stretch regions. Comparison with density functional theory calculations including dispersion (DFT-D) unambiguously shows that the complex consists of a doubly protonated Cinchona alkaloid strongly bound to a bisulfate HSO4- anion, which bridges the two protonated sites of the Cinchona alkaloid.

View Article and Find Full Text PDF

Peptide models built from cis- and trans-2-aminocyclobutane-1-carboxylic acids (ACBCs) are studied in the solid phase by combining Fourier-transform infrared spectroscopy (FTIR) absorption spectroscopy, vibrational circular dichroism (VCD), and quantum chemical calculations using density functional theory (DFT). The studied systems are N-tert-butyloxycarbonyl (Boc) derivatives of 2-aminocyclobutanecarboxylic acid (ACBC) benzylamides, namely Boc-(cis-ACBC)-NH-Bn and Boc-(trans-ACBC)-NH-Bn. These two diastereomers show very different VCD signatures and intensities, which of the trans-ACBC derivative being one order of magnitude larger in the region of the ν (CO) stretch.

View Article and Find Full Text PDF

Tyrosine-containing cyclic dipeptides based on a diketopiperazine (DKP) ring are studied under jet-cooled conditions using resonance-enhanced multi-photon ionisation (REMPI), conformer-selective IR-UV double resonance vibrational spectroscopy and quantum chemical calculations. The conformational landscape of the dipeptide containing natural L tyrosine (Tyr), namely c-LTyr-LTyr strongly differs from that of its diastereomer c-LTyr-DTyr. A similar family of conformers exists in both systems, with one aromatic ring folded on the dipeptide DKP ring and the other one extended.

View Article and Find Full Text PDF

The influence of flexibility and hydrogen bond formation on the IR absorption and vibrational circular dichroism (VCD) spectrum of a floppy protic molecule, namely, (S)-1-indanol, is studied in both non-polar CCl4 and polar DMSO solvents. The experimental IR absorption and VCD spectra obtained by Fourier transform spectroscopy are interpreted using both static density functional theory (DFT) calculations and first principles molecular dynamics (FPMD) within DFT, using the nuclear velocity perturbation theory (NVPT). Simulation of the spectra based on static optimised geometries is not sufficient in CCl4 and going beyond static calculations is mandatory for satisfactorily reproducing the VCD spectra.

View Article and Find Full Text PDF

To understand the role of chirality in shaping biological supramolecular systems it is instructive to visualize the subtle effects of stereochemistry on the structure of model aggregates at the molecular level. Here, we apply conformer-specific IR-UV double-resonance laser spectroscopy in a cold ion trap to derive a detailed description of the protonated homodimers of (1R,2S)-cis- and (1R,2R)-trans-1-amino-2-indanol (c-AI2H+, t-AI2H+). Although the protonated monomers (c-AIH+, t-AIH+) only differ by the chirality of one carbon atom, their conformations are clearly distinct.

View Article and Find Full Text PDF

The diastereomer diketopiperazine (DKP) peptides built on phenylalanine, namely, cyclo diphenylalanine LPhe-LPhe and LPhe-DPhe, were studied in the solid phase by vibrational circular dichroism (VCD) coupled to quantum chemical calculations. The unit structure of cyclo LPhe-LPhe in KBr pellets is a dimer bridged by two strong NH…O hydrogen bonds. The intense bisignate signature in the CO stretch region is interpreted in terms of two contributions arising from the free COs of the dimer and the antisymmetrical combination of the bound COs.

View Article and Find Full Text PDF