The spectral form factor (SFF) captures universal spectral fluctuations as signatures of quantum chaos, and has been instrumental in advancing multiple frontiers of physics including the studies of black holes and quantum many-body systems. The measurement of the SFF in many-body systems is however challenging due to the difficulty in resolving level spacings that become exponentially small with increasing system size. Here, we utilize the random measurement toolbox to perform a direct experimental measurement of the SFF, and hence probe the presence or absence of chaos in quantum many-body systems on superconducting quantum processors.
View Article and Find Full Text PDFTracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states.
View Article and Find Full Text PDFThe ability to realize high-fidelity quantum communication is one of the many facets required to build generic quantum computing devices. In addition to quantum processing, sensing, and storage, transferring the resulting quantum states demands a careful design that finds no parallel in classical communication. Existing experimental demonstrations of quantum information transfer in solid-state quantum systems are largely confined to small chains with few qubits, often relying upon non-generic schemes.
View Article and Find Full Text PDF