EPAC1, a cAMP-activated GEF for Rap GTPases, is a major transducer of cAMP signaling and a therapeutic target in cardiac diseases. The recent discovery that cAMP is compartmentalized in membrane-proximal nanodomains challenged the current model of EPAC1 activation in the cytosol. Here, we discover that anionic membranes are a major component of EPAC1 activation.
View Article and Find Full Text PDFMost small GTPases actuate their functions on subcellular membranes, which are increasingly seen as integral components of small GTPase signalling. In this review, we used the highly studied regulation of Arf GTPases by their GEFs to categorize the molecular principles of membrane contributions to small GTPase signalling, which have been highlighted by integrated structural biology combining in vitro reconstitutions in artificial membranes and high-resolution structures. As an illustration of how this framework can be harnessed to better understand the cooperation between small GTPases, their regulators and membranes, we applied it to the activation of the small GTPase Rac1 by DOCK-ELMO, identifying novel contributions of membranes to Rac1 activation.
View Article and Find Full Text PDFSmall GTPases, in association with their GEFs, GAPs and effectors, control major intracellular processes such as signal transduction, cytoskeletal dynamics and membrane trafficking. Accordingly, dysfunctions in their biochemical properties are associated with many diseases, including cancers, diabetes, infections, mental disorders and cardiac diseases, which makes them attractive targets for therapies. However, small GTPases signalling modules are not well-suited for classical inhibition strategies due to their mode of action that combines protein-protein and protein-membrane interactions.
View Article and Find Full Text PDFMembrane dynamic processes require Arf GTPase activation by guanine nucleotide exchange factors (GEFs) with a Sec7 domain. Cytohesin family Arf GEFs function in signaling and cell migration through Arf GTPase activation on the plasma membrane and endosomes. In this study, the structural organization of two cytohesins (Grp1 and ARNO) was investigated in solution by size exclusion-small angle X-ray scattering and negative stain-electron microscopy and on membranes by dynamic light scattering, hydrogen-deuterium exchange-mass spectrometry and guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange assays.
View Article and Find Full Text PDFIn the version of this article originally published, several co-authors had incorrect affiliation footnote numbers listed in the author list. Tatiana Cañeque and Angelica Mariani should each have affiliation numbers 3, 4 and 5, and Emmanuelle Charafe-Jauffret should have number 6. Additionally, there was an extra space in the name of co-author Robert P.
View Article and Find Full Text PDFPeripheral membrane proteins orchestrate many physiological and pathological processes, making regulation of their activities by small molecules highly desirable. However, they are often refractory to classical competitive inhibition. Here, we demonstrate that potent and selective inhibition of peripheral membrane proteins can be achieved by small molecules that target protein-membrane interactions by a noncompetitive mechanism.
View Article and Find Full Text PDFRac small GTPases and their GEFs of the DOCK family are pivotal checkpoints in development, autoimmunity and bone homeostasis, and their abnormal regulation is associated to diverse pathologies. Small molecules that inhibit their activities are therefore needed to investigate their functions. Here, we characterized the mechanism of inhibition of human DOCK5 by C21, a small molecule that inhibits mouse Dock5 in cells and blocks bone degradation in mice models of osteoporosis.
View Article and Find Full Text PDFArf GTPases and their guanine nucleotide exchange factors (ArfGEFs) are major regulators of membrane traffic and organelle structure in cells. They are associated with a variety of diseases and are thus attractive therapeutic targets for inhibition by small molecules. Several inhibitors of unrelated chemical structures have been discovered, which have shown their potential in dissecting molecular pathways and blocking disease-related functions.
View Article and Find Full Text PDFActive, GTP-bound small GTPases need to be attached to membranes by post-translational lipid modifications in order to process and propagate information in cells. However, generating and manipulating lipidated GTPases has remained difficult, which has limited our quantitative understanding of their activation by guanine nucleotide exchange factors (GEFs) and their termination by GTPase-activating proteins. Here, we replaced the lipid modification by a histidine tag in 11 full-length, human small GTPases belonging to the Arf, Rho and Rab families, which allowed to tether them to nickel-lipid-containing membranes and characterize the kinetics of their activation by GEFs.
View Article and Find Full Text PDFArf GTPases assemble protein complexes on membranes to carry out major functions in cellular traffic. An essential step is their activation by guanine nucleotide exchange factors (GEFs), whose Sec7 domain stimulates GDP/GTP exchange. ArfGEFs form 2 major families: ArfGEFs with DCB, HUS and HDS domains (GBF1 and BIG1/BIG2 in humans), which act at the Golgi; and ArfGEFs with a C-terminal PH domain (cytohesin, EFA6 and BRAG), which function at the plasma membrane and endosomes.
View Article and Find Full Text PDFOsteoporosis is caused by excessive activity of bone-degrading osteoclasts over bone-forming osteoblast. Standard antiosteolytic treatments inhibit bone resorption by inducing osteoclast loss, with the adverse effect of hindering also bone formation. Formation of the osteoclast sealing zone requires Dock5, a guanine nucleotide exchange factor for the small GTPase Rac, and C21, a chemical inhibitor of Dock5, decreases bone resorption by cultured osteoclasts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2014
Guanine nucleotide exchange factors (GEFs) of the exchange factor for Arf6 (EFA6), brefeldin A-resistant Arf guanine nucleotide exchange factor (BRAG), and cytohesin subfamilies activate small GTPases of the Arf family in endocytic events. These ArfGEFs carry a pleckstrin homology (PH) domain in tandem with their catalytic Sec7 domain, which is autoinhibitory and supports a positive feedback loop in cytohesins but not in BRAGs, and has an as-yet unknown role in EFA6 regulation. In this study, we analyzed how EFA6A is regulated by its PH and C terminus (Ct) domains by reconstituting its GDP/GTP exchange activity on membranes.
View Article and Find Full Text PDFGenome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner.
View Article and Find Full Text PDFThe intracellular bacterial pathogen Legionella pneumophila (Lp) evades destruction in macrophages by camouflaging in a specialized organelle, the Legionella-containing vacuole (LCV), where it replicates. The LCV maturates by incorporating ER vesicles, which are diverted by effectors that Lp injects to take control of host cell membrane transport processes. One of these effectors, RalF, recruits the trafficking small GTPase Arf1 to the LCV.
View Article and Find Full Text PDFThe mechanisms whereby guanine nucleotide exchange factors (GEFs) coordinate their subcellular targeting to their activation of small GTPases remain poorly understood. Here we analyzed how membranes control the efficiency of human BRAG2, an ArfGEF involved in receptor endocytosis, Wnt signaling, and tumor invasion. The crystal structure of an Arf1-BRAG2 complex that mimics a membrane-bound intermediate revealed an atypical PH domain that is constitutively anchored to the catalytic Sec7 domain and interacts with Arf.
View Article and Find Full Text PDFSmall GTP-binding proteins of the Arf family (Arf GTPases) interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Understanding the underlying molecular mechanisms requires in vitro biochemical assays to test for regulations and functions. Such assays should use proteins in their cellular form, which carry a myristoyl lipid attached in N-terminus.
View Article and Find Full Text PDFSmall GTPases use GDP/GTP alternation to actuate a variety of functional switches that are pivotal for cell dynamics. The GTPase switch is turned on by GEFs, which stimulate dissociation of the tightly bound GDP, and turned off by GAPs, which accelerate the intrinsically sluggish hydrolysis of GTP. For Ras, Rho, and Rab GTPases, this switch incorporates a membrane/cytosol alternation regulated by GDIs and GDI-like proteins.
View Article and Find Full Text PDFForkhead box O (FOXO) transcription factors favor both T cell quiescence and trafficking through their control of the expression of genes involved in cell cycle progression, adhesion, and homing. In this article, we report that the product of the fam65b gene is a new transcriptional target of FOXO1 that regulates RhoA activity. We show that family with sequence similarity 65 member b (Fam65b) binds the small GTPase RhoA via a noncanonical domain and represses its activity by decreasing its GTP loading.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
June 2012
RGK proteins are atypical small GTP-binding proteins that are involved in the regulation of voltage-dependent calcium channels and actin cytoskeleton remodelling. The structure of the Rem2 G domain bound to GDP is reported here in a monoclinic crystal form at 2.66 Å resolution.
View Article and Find Full Text PDFBrefeldin A-mediated inhibition of ADP ribosylation factor (Arf) GTPases and their guanine nucleotide exchange factors, Arf-GEFs, has been a cornerstone of membrane trafficking research for many years. Brefeldin A (BFA) is relatively non-selective inhibiting at least three targets in human cells, Golgi brefeldin A resistance factor 1 (GBF1), brefeldin A inhibited guanine nucleotide exchange factor 1 (BIG1) and brefeldin A inhibited guanine nucleotide exchange factor 2 (BIG2). Here, we show that the previously described compound Exo2 acts through inhibition of Arf-GEF function, but causes other phenotypic changes that are not GBF1 related.
View Article and Find Full Text PDFThe small GTPases Arf1 and Arf6 have nonoverlapping functions in cellular traffic despite their very high sequence and structural resemblance. Notably, the exquisite isoform specificity of their guanine nucleotide exchange factors and their distinctive sensitivity to the drug brefeldin A cannot be explained by any straightforward structural model. Here we integrated structural and spectroscopic methods to address this issue using Δ13Arf6-GDP, a truncated mutant that mimics membrane-bound Arf6-GDP.
View Article and Find Full Text PDFGuanine nucleotide exchange factors (GEFs) activate the Rho GTPases by accelerating their GDP/GTP exchange rate. Some RhoGEFs have been isolated based on their oncogenic potency, and strategies to inhibit their activity are therefore actively being sought. In this study we devise a peptide inhibitor screening strategy to target the GEF activity of Tgat, an oncogenic isoform of the RhoGEF Trio, based on random mutations of the Trio inhibitor TRIP alpha, which we previously isolated using a peptide aptamer screen.
View Article and Find Full Text PDFThe Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2008
Guanine nucleotide exchange factors (GEFs) stimulate the activation of small GTP-binding proteins (GTPases). Establishing their specificity is a challenging issue, in which chemical genetics are rapidly gaining interest. We report a mutation in the Arf1 GTPase, K38A, which differentially alters its sensitivity to GEF inhibitors.
View Article and Find Full Text PDF