In this paper, we present the design, construction, and testing of a monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling applications. The collimator is based on a large-sized fiber end cap and a spherical lens design on the output facet. Values of the spot size and working distance are theoretically analyzed based on Gaussian approximation and ABCD transmission matrix.
View Article and Find Full Text PDFProgression through the cell cycle is largely dependent on waves of periodic gene expression, and the regulatory networks for these transcriptome dynamics have emerged as critical points of vulnerability in various aspects of tumor biology. Through RNA-sequencing of human cells during two continuous cell cycles (>2.3 billion paired reads), we identified over 1 000 mRNAs, non-coding RNAs and pseudogenes with periodic expression.
View Article and Find Full Text PDFMutations in the human MECP2 gene cause Rett syndrome (RTT), a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain.
View Article and Find Full Text PDFIntroduction: Cardiac cell apoptosis plays a crucial role in the progression of diabetic cardiomyopathy. Recent studies have shown that fasudil, a Rho-kinase (ROCK) inhibitor, inhibits cardiac cell apoptosis; however, the underlying mechanism remains unclear.
Aim: This study aimed to investigate whether fasudil protects H9c2 cells from high glucose-induced apoptosis via activation of autophagy.
Aberrant splicing is frequently found in cancer, yet the biological consequences of such alterations are mostly undefined. Here we report that the Hippo-YAP signalling, a key pathway that regulates cell proliferation and organ size, is under control of a splicing switch. We show that TEAD4, the transcription factor that mediates Hippo-YAP signalling, undergoes alternative splicing facilitated by the tumour suppressor RBM4, producing a truncated isoform, TEAD4-S, which lacks an N-terminal DNA-binding domain, but maintains YAP interaction domain.
View Article and Find Full Text PDFThe motivation of this work is to create luminescent rare earth/polymer films with outstanding water-resistance and superhydrophobicity. Specifically, the emulsion polymerization of styrene leads to core particles. Then core-shell-structured polymer nanoparticles are synthesized by copolymerization of styrene and acrylic acid on the core surface.
View Article and Find Full Text PDFProgression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes.
View Article and Find Full Text PDFHighly cross-linked poly(divinylbenzene) (PDVB) spherical colloidal particles with nano-, submicron-, and micron-sizes of 157.2 nm, 602.1 nm, and 5.
View Article and Find Full Text PDFThe majority of human genes undergo alternative splicing to produce multiple isoforms with distinct functions. The dysregulations of alternative splicing have been found to be closely associated with various human diseases; thus new approaches to modulate disease-associated splicing events will provide great therapeutic potentials. Here we report protocols for constructing novel artificial splicing factors that can be designed to specifically modulate alternative splicing of target genes.
View Article and Find Full Text PDFRNA parts often serve as critical components in genetic engineering. Here we report a design of translational activators which is composed of an RNA endoribonuclease (Csy4) and two exchangeable RNA modules. Csy4, a member of Cas endoribonuclease, cleaves at a specific recognition site; this cleavage releases a cis-repressive RNA module (crRNA) from the masked ribosome binding site (RBS), which subsequently allows the downstream translation initiation.
View Article and Find Full Text PDFUnlabelled: This study aimed to use spatiotemporal PET imaging to investigate the dynamic metabolic changes after a combined therapeutic approach of induced pluripotent stem cells (iPSCs), neuronal stem cells (NSCs), and Chinese patent medicine in a rat model of cerebral ischemia-reperfusion injury.
Methods: Cerebral ischemia was established by the middle cerebral artery occlusion approach. Thirty-six male rats were randomly assigned to 1 of the 6 groups: control phosphate-buffered saline (PBS), Chinese patent medicine (Qing-kai-ling [QKL]), induced pluripotent stem cells (iPSCs), combination of iPSCs and QKL, neuronal stem cells (NSCs), and combination of NSCs and QKL.
With generations of efforts to understand RNA functions in diverse cellular processes, RNA-binding proteins (RBPs) have emerged to be one of the central players in regulating RNA-related pathways. RBPs control almost all aspects of RNA processing via recognizing their RNA target(s). Most of these proteins have a modular configuration, with one or more RNA-binding domain for target recognition and various functional modules to affect the metabolism and biological functions of RNA.
View Article and Find Full Text PDFTrypanosomes possess a unique mitochondrial genome called the kinetoplast DNA (kDNA). Many kDNA genes encode pre-mRNAs that must undergo guide RNA-directed editing. In addition, alternative mRNA editing gives rise to diverse mRNAs and several kDNA genes encode open reading frames of unknown function.
View Article and Find Full Text PDFDysregulation of alternative splicing (AS) is one of the molecular hallmarks of cancer, with splicing alteration of numerous genes in cancer patients. However, studying splicing mis-regulation in cancer is complicated by the large noise generated from tissue-specific splicing. To obtain a global picture of cancer-specific splicing, we analyzed transcriptome sequencing data from 1149 patients in The Cancer Genome Atlas project, producing a core set of AS events significantly altered across multiple cancer types.
View Article and Find Full Text PDFWhile the human transcriptome contains a large number of circular RNAs (circRNAs), the functions of most circRNAs remain unclear. Sequence annotation suggests that most circRNAs are generated from splicing in reversed orders across exons. However, the mechanisms of this backsplicing are largely unknown.
View Article and Find Full Text PDFWe report 3.1-3.2 μm mid-infrared emission from acetylene-filled low loss antiresonant hollow-core fiber pumped with an amplified, modulated, narrowband, tunable 1.
View Article and Find Full Text PDFSplicing dysregulation is one of the molecular hallmarks of cancer. However, the underlying molecular mechanisms remain poorly defined. Here we report that the splicing factor RBM4 suppresses proliferation and migration of various cancer cells by specifically controlling cancer-related splicing.
View Article and Find Full Text PDFAdv Exp Med Biol
December 2014
A large number of RNA-binding proteins play critical roles in controlling eukaryotic gene expression at multiple RNA-processing steps. Many of these proteins have modular configuration, containing a RNA binding domain to recognize their target and functional module to affect RNA metabolism. This simple configuration motivated the design of artificial factors that specifically manipulate RNA.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol Ther
January 2015
Background: Toll-like receptor 4 participates in the process of acute heart injury. The underlying mechanisms of its protection are multifactorial, but we hypothesized that toll-like receptor-mediated autophagy control plays a vital role. The purpose of this study was to clarify the effect of autophagy on cardiac fibrosis.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
February 2014
Objective: To study the protective effect of Shenxiong injection on the cerebral ischemia-reperfusion injury of senile rats.
Method: Totally 108 Sprague-Dawley (SD) rats were randomly divided into the sham operation group, the model group, the Ni-modipine group and Shenxiong injection groups (low, middle, and high doses). The rat brain ischemia-reperfusion model was established by the middle cerebral artery occlusion (MCAO) method in rats, in order to observe the effect of Shenxiong injection on neurological score and brain infarct volume of rats with cerebral ischemia-reperfusion injury, and determine the contents of NOS, NO, SOD, MDA and LDH in brain tissues.
Evid Based Complement Alternat Med
April 2014
This study aimed to investigate neuroprotection of Danhong injection (DHI) in a rat model of cerebral ischemia using (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET). Method. Rats were divided into 5 groups: sham group, ischemia-reperfusion untreated (IRU) group, DHI-1 group (DHI 1 mL/kg/d), DHI-2 group (DHI 2 mL/kg/d), and DHI-4 group (DHI 4 mL/kg/d).
View Article and Find Full Text PDFThe sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.
View Article and Find Full Text PDFOne of the most amazing findings in molecular biology was the discovery that eukaryotic genes are discontinuous, with coding DNA being interrupted by stretches of non-coding sequence. The subsequent realization that the intervening regions are removed from pre-mRNA transcripts via the activity of a common set of small nuclear RNAs (snRNAs), which assemble together with associated proteins into a complex known as the spliceosome, was equally surprising. How do cells coordinate the assembly of this molecular machine? And how does the spliceosome accurately recognize exons and introns to carry out the splicing reaction? Insights into these questions have been gained by studying the life cycle of spliceosomal snRNAs from their transcription, nuclear export and re-import to their dynamic assembly into the spliceosome.
View Article and Find Full Text PDFAlternative splicing of pre-messenger RNA (mRNA) is a critical stage of gene regulation in response to environmental stimuli. Here we show that DAZAP1, an RNA-binding protein involved in mammalian development and spermatogenesis, promotes inclusion of weak exons through specific recognition of diverse cis-elements. The carboxy-terminal proline-rich domain of DAZAP1 interacts with and neutralizes general splicing inhibitors, and is sufficient to activate splicing when recruited to pre-mRNA.
View Article and Find Full Text PDF