Carbon materials display intriguing physical properties, including superconductivity and highly anisotropic thermal conductivity found in graphene. Compressive strain can induce structural and bonding transitions in carbon materials and create new carbon phases, but their interplay with thermal conductivity remains largely unexplored. We investigated the in situ high-pressure thermal conductivity of compressed graphitic phases using picosecond transient thermoreflectance and first-principles calculations.
View Article and Find Full Text PDF3D Print Addit Manuf
April 2024
Quantum materials have attracted much attention in recent years due to their exotic and incredible properties. Among them, van der Waals materials stand out due to their weak interlayer coupling, providing easy access to manipulating electrical and optical properties. Many fascinating electrical, optical, and magnetic properties have been reported in the moiré superlattices, such as unconventional superconductivity, photonic dispersion engineering, and ferromagnetism.
View Article and Find Full Text PDFQuantum Griffiths singularity was theoretically proposed to interpret the phenomenon of divergent dynamical exponent in quantum phase transitions. It has been discovered experimentally in three-dimensional (3D) magnetic metal systems and two-dimensional (2D) superconductors. But, whether this state exists in lower dimensional systems remains elusive.
View Article and Find Full Text PDFRecently, Weyl semimetals have been experimentally discovered in both inversion-symmetry-breaking and time-reversal-symmetry-breaking crystals. The non-trivial topology in Weyl semimetals can manifest itself with exotic phenomena, which have been extensively investigated by photoemission and transport measurements. Despite the numerous experimental efforts on Fermi arcs and chiral anomaly, the existence of unconventional zeroth Landau levels, as a unique hallmark of Weyl fermions, which is highly related to chiral anomaly, remains elusive owing to the stringent experimental requirements.
View Article and Find Full Text PDF