Introduction: Both the incidence and mortality rates associated with methicillin-resistant (MRSA) have progressively increased worldwide. A nucleic acid testing system was developed in response, enabling swift and precise detection of () and its MRSA infection status. This facilitates improved prevention and control of MRSA infections.
View Article and Find Full Text PDFSystemic antiplatelet treatment represents a promising option to improve the therapeutic outcomes and therapeutic efficacy of chemotherapy and immunotherapy due to the critical contribution of platelets to tumour progression. However, until recently, targeting platelets as a cancer therapeutic has been hampered by the elevated risk of haemorrhagic and thrombocytopenic (low platelet count) complications owing to the lack of specificity for tumour-associated platelets. Recent work has advanced our understanding of the molecular mechanisms responsible for the contribution of platelets to tumour progression and metastasis.
View Article and Find Full Text PDFA characteristic clinical complication in cancer patients is the frequent incidence of thrombotic events. Numerous studies have shown hyperactive/activated platelets to be a critical earlier trigger for cancer-associated thrombus formation. However, there currently is no viable approach to monitor specific changes in tumor-associated platelet activity.
View Article and Find Full Text PDFMicroscopic examination of thick and thin blood smears stained with Giemsa dye is considered the primary diagnostic tool for the confirmation and management of suspected clinical malaria. However, detecting gametocytes is relatively insensitive, particularly in asymptomatic individuals with low-density infections. To complement existing diagnostic methods, a rapid and ultrasensitive point-of-care testing (POCT) platform for malaria detection is urgently needed and necessary.
View Article and Find Full Text PDFUnlabelled: Nanoparticles (NP) spanning diverse materials and properties have the potential to encapsulate and to protect a wide range of therapeutic cargos to increase bioavailability, to prevent undesired degradation, and to mitigate toxicity. Fulvestrant, a selective estrogen receptor degrader, is commonly used for treating patients with estrogen receptor (ER)-positive breast cancer, but its broad and continual application is limited by poor solubility, invasive muscle administration, and drug resistance. Here, we developed an active targeting motif-modified, intravenously injectable, hydrophilic NP that encapsulates fulvestrant to facilitate its delivery via the bloodstream to tumors, improving bioavailability and systemic tolerability.
View Article and Find Full Text PDFNew strategies to decrease risk of relapse after surgery are needed for improving 5-year survival rate of hepatocellular carcinoma (HCC). To address this need, a wound-targeted nanodrug is developed, that contains an immune checkpoint inhibitor (anti-PD-L1)and an angiogenesis inhibitor (sorafenib)). These nanoparticles consist of highly biocompatible mesoporous silica (MSNP) that is surface-coated with platelet membrane (PM) to achieve surgical site targeting in a self-amplified accumulation manner.
View Article and Find Full Text PDFSelective occlusion of tumor vasculature has proven to be an effective strategy for cancer therapy. Among vascular coagulation agents, the extracellular domain of coagulation-inducing protein tissue factor, truncated tissue factor (tTF), is the most widely used. Since the truncated protein exhibits no coagulation activity and is rapidly cleared in the circulation, free tTF cannot be used for cancer treatment on its own but must be combined with other moieties.
View Article and Find Full Text PDFCompared with traditional chemotherapeutics, vascular disruption agents (VDAs) have the advantages of rapidly blocking the supply of nutrients and starving tumors to death. Although the VDAs are effective under certain scenarios, this treatment triggers angiogenesis in the later stage of therapy that frequently leads to tumor recurrence and treatment failure. Additionally, the nonspecific tumor targeting and considerable side effects also impede the clinical applications of VDAs.
View Article and Find Full Text PDFDrugs that induce thrombosis in the tumour vasculature have not resulted in long-term tumour eradication owing to tumour regrowth from tissue in the surviving rim of the tumour, where tumour cells can derive nutrients from adjacent non-tumoral blood vessels and tissues. Here, we report the performance of a combination of tumour-infarction therapy and chemotherapy, delivered via chitosan-based nanoparticles decorated with a tumour-homing peptide targeting fibrin-fibronectin complexes overexpressed on tumour-vessel walls and in tumour stroma, and encapsulating the coagulation-inducing protease thrombin and the chemotherapeutic doxorubicin. Systemic administration of the nanoparticles into mice and rabbits bearing subcutaneous or orthotopic tumours resulted in higher tumour growth suppression and decreased tumour recurrence than nanoparticles delivering only thrombin or doxorubicin, with histological and haematological analyses indicating an absence of detectable toxicity.
View Article and Find Full Text PDFImmunotherapy that activates the host immune system to reverse immunosuppression has emerged as a new generation of cancer treatment in both preclinical studies and clinical trials. Although immunotherapy has shown significant achievements in the treatment of various cancers, it faces challenges that limit its further evolution such as poor permeation and modest responsiveness. The development of nanoparticle drug delivery system has provided an opportunity to overcome these drawbacks and to achieve optimized immunotherapy.
View Article and Find Full Text PDFRapid cut-off of blood supply in diseases involving thrombosis is a major cause of morbidity and mortality worldwide. However, the current thrombolysis strategies offer limited results due to the therapeutics' short half-lives, low targeting ability, and unexpected bleeding complications. Inspired by the innate roles of platelets in hemostasis and pathological thrombus, platelet membrane-camouflaged polymeric nanoparticles (nanoplatelets) are developed for targeting delivery of the thrombolytic drug, recombinant tissue plasminogen activator (rt-PA), to local thrombus sites.
View Article and Find Full Text PDF