Publications by authors named "Zefang Han"

Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure.

View Article and Find Full Text PDF

Generative adversarial networks are being extensively studied for low-dose computed tomography denoising. However, due to the similar distribution of noise, artifacts, and high-frequency components of useful tissue images, it is difficult for existing generative adversarial network-based denoising networks to effectively separate the artifacts and noise in the low-dose computed tomography images. In addition, aggressive denoising may damage the edge and structural information of the computed tomography image and make the denoised image too smooth.

View Article and Find Full Text PDF