Publications by authors named "Zeev Valy Vardeny"

In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (g) of up to 10. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations.

View Article and Find Full Text PDF

Two-dimensional (2D) hybrid organic/inorganic perovskites are an emerging materials class for optoelectronic and spintronic applications due to strong excitonic absorption and emission, large spin-orbit coupling, and Rashba spin-splitting effects. For many of the envisioned applications, tuning the majority charge carrier (electron or hole) concentration is desirable, but electronic doping of metal-halide perovskites has proven to be challenging. Here, we demonstrate electron injection into the lower-energy branch of the Rashba-split conduction band of 2D phenethylammonium lead iodide by means of n-type molecular doping at room temperature.

View Article and Find Full Text PDF

Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) with enhanced stability, high tunability, and strong spin-orbit coupling have shown great potential in vast applications. Here, we extend the already rich functionality of 2D HOIPs to a new territory, realizing topological superconductivity and Majorana modes for fault-tolerant quantum computation. Especially, we predict that room-temperature ferroelectric BAPbCl (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity-coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application.

View Article and Find Full Text PDF

Chiral materials exhibit many interesting physical properties including circular dichroism, circularly polarized photoluminescence, and spin selectivity. Since its discovery, chirality-induced spin selectivity (CISS) has been demonstrated in many chiral material systems, which indicates promising applications in spintronic devices. Thus, searching for compounds that possess both sizable chirality and excellent spin transport properties is in order.

View Article and Find Full Text PDF

The relationship between the structural asymmetry and optoelectronic properties of functional materials is an active area of research. The movement of charges through an oriented chiral medium depends on the spin configuration of the charges, and such systems can be used to control spin populations without magnetic components - termed the chiral-induced spin selectivity (CISS) effect. CISS has mainly been studied in chiral organic molecules and their assemblies.

View Article and Find Full Text PDF

Understanding the stability and degradation of organic light-emitting diodes (OLEDs) under working conditions is a significant area of research for developing more effective OLEDs and further improving their performance. However, studies of degradation processes by in situ noninvasive methods have not been adequately developed. In this work, tris-(8-hydroxyquinolino) aluminum (Alq)-based OLED degradation processes have been analyzed through the investigation of the device dispersive magneto-electroluminescence (MEL()) response measured at room temperature.

View Article and Find Full Text PDF

In traditional optoelectronic approaches, control over spin, charge, and light requires the use of both electrical and magnetic fields. In a spin-polarized light-emitting diode (spin-LED), charges are injected, and circularly polarized light is emitted from spin-polarized carrier pairs. Typically, the injection of carriers occurs with the application of an electric field, whereas spin polarization can be achieved using an applied magnetic field or polarized ferromagnetic contacts.

View Article and Find Full Text PDF

Solution-processable two-dimensional (2D) organic-inorganic hybrid perovskite (OIHP) quantum wells naturally self-assemble through weak van der Waals forces. In this study, we investigate the structural and optoelectronic properties of 2D-layered butylammonium (CHNH, BA) methylammonium (CHNH, MA) lead iodide, (BA)(MA)PbI quantum wells with varying from 1 to 4. Through conventional structural characterization, (BA)(MA)PbI thin films showcase high-quality phase () purity.

View Article and Find Full Text PDF
Article Synopsis
  • Non-chiral perovskite layers can display circular dichroism (CD) without needing a magnetic field or chiral molecules, due to splitting of helical excitonic states.
  • The phenomenon arises from the interplay of Rashba spin effects and symmetry characteristics in orthorhombic or lower symmetry structures.
  • This results in notable polarization-dependent absorption and significant CD, with an anisotropy factor reaching up to 30%, suggesting potential observations in non-chiral perovskite materials.
View Article and Find Full Text PDF
Article Synopsis
  • Chiral-induced spin selectivity (CISS) is the phenomenon where the chirality of a medium influences the transport of electron spins, allowing one spin state to dominate over another.
  • The study presents a new system using chiral 2D-layered Pb-iodide organic/inorganic hybrid perovskites that show efficient CISS, overcoming the limitations of previous monolayer structures.
  • Experimental results demonstrate a high spin-polarization transport of 86%, showing that electron movement through the films is affected by both the magnetic state of the probe and the chiral nature of the molecules, as confirmed by magnetoresistance tests in modified spin-valve devices.
View Article and Find Full Text PDF

The hybrid organic-inorganic perovskites (HOIPs) form a new class of semiconductors which show promising optoelectronic device applications. Remarkably, the optoelectronic properties of HOIP are tunable by changing the chemical components of their building blocks. Recently, the HOIP spintronic properties and their applications in spintronic devices have attracted substantial interest.

View Article and Find Full Text PDF

Three dimensional (3D) topological insulators (TIs) are an important class of materials with applications in electronics, spintronics and quantum computing. With the recent development of truly bulk insulating 3D TIs, it has become possible to realize surface dominated phenomena in electrical transport measurements e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on developing ultrafast, frequency-agile terahertz metamaterials using multiple perovskites, enabling advanced applications in spectroscopy and communications.
  • A unique fabrication technique protects previously deposited perovskites from solvents, allowing for precise micrometer-scale patterning and proximity of different perovskites within a unit cell.
  • The ability to tune terahertz resonances based on varying optical pump fluences and wavelengths leads to new functionalities, including resonance tuning and suppression, paving the way for innovative terahertz device capabilities.
View Article and Find Full Text PDF

Two-dimensional (2D) organic-inorganic hybrid perovskite multiple quantum wells that consist of multilayers of alternate organic and inorganic layers exhibit large exciton binding energies of order of 0.3 eV due to the dielectric confinement between the inorganic and organic layers. We have investigated the exciton characteristics of 2D butylammonium lead iodide, (CHNH)PbI using photoluminescence and UV-vis absorption in the temperature range of 10 K to 300 K, and electroabsorption spectroscopy.

View Article and Find Full Text PDF

Two-dimensional (2D) layered hybrid organic-inorganic halide perovskite semiconductors form natural "multiple quantum wells" that have strong spin-orbit coupling due to the heavy elements in their building blocks. This may lead to "Rashba splitting" close to the extrema in the electron bands. We have used a plethora of ultrafast transient, nonlinear optical spectroscopies and theoretical calculations to study the primary (excitons) and long-lived (free carriers) photoexcitations in thin films of 2D perovskite, namely, (CHCHNH)PbI.

View Article and Find Full Text PDF

Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CHNHPbI-based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution.

View Article and Find Full Text PDF

We studied steady state and transient photocurrents in thin film and single-crystal devices of MAPbBr, a prototype organic-inorganic hybrid perovskite. We found that the devices' capacitance is abnormally large, which originates from accumulation of large densities of Pb and Br in the active perovskite layer. Under applied bias, these ions are driven toward the opposite electrodes leading to space-charge fields close to the metal/perovskite interfaces.

View Article and Find Full Text PDF

We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers.

View Article and Find Full Text PDF

We measured the picoseconds (ps) transient dynamics of photoexcitations in blends of regio-regular poly(3-hexyl-thiophene) (RR-P3HT) (donors-D) and fullerene (PCBM) (acceptor-A) in an unprecedented broad spectral range of 0.25 to 2.5 eV.

View Article and Find Full Text PDF