In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (g) of up to 10. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations.
View Article and Find Full Text PDFTwo-dimensional (2D) hybrid organic/inorganic perovskites are an emerging materials class for optoelectronic and spintronic applications due to strong excitonic absorption and emission, large spin-orbit coupling, and Rashba spin-splitting effects. For many of the envisioned applications, tuning the majority charge carrier (electron or hole) concentration is desirable, but electronic doping of metal-halide perovskites has proven to be challenging. Here, we demonstrate electron injection into the lower-energy branch of the Rashba-split conduction band of 2D phenethylammonium lead iodide by means of n-type molecular doping at room temperature.
View Article and Find Full Text PDFTwo-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) with enhanced stability, high tunability, and strong spin-orbit coupling have shown great potential in vast applications. Here, we extend the already rich functionality of 2D HOIPs to a new territory, realizing topological superconductivity and Majorana modes for fault-tolerant quantum computation. Especially, we predict that room-temperature ferroelectric BAPbCl (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity-coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application.
View Article and Find Full Text PDFChiral materials exhibit many interesting physical properties including circular dichroism, circularly polarized photoluminescence, and spin selectivity. Since its discovery, chirality-induced spin selectivity (CISS) has been demonstrated in many chiral material systems, which indicates promising applications in spintronic devices. Thus, searching for compounds that possess both sizable chirality and excellent spin transport properties is in order.
View Article and Find Full Text PDFThe relationship between the structural asymmetry and optoelectronic properties of functional materials is an active area of research. The movement of charges through an oriented chiral medium depends on the spin configuration of the charges, and such systems can be used to control spin populations without magnetic components - termed the chiral-induced spin selectivity (CISS) effect. CISS has mainly been studied in chiral organic molecules and their assemblies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
Understanding the stability and degradation of organic light-emitting diodes (OLEDs) under working conditions is a significant area of research for developing more effective OLEDs and further improving their performance. However, studies of degradation processes by in situ noninvasive methods have not been adequately developed. In this work, tris-(8-hydroxyquinolino) aluminum (Alq)-based OLED degradation processes have been analyzed through the investigation of the device dispersive magneto-electroluminescence (MEL()) response measured at room temperature.
View Article and Find Full Text PDFIn traditional optoelectronic approaches, control over spin, charge, and light requires the use of both electrical and magnetic fields. In a spin-polarized light-emitting diode (spin-LED), charges are injected, and circularly polarized light is emitted from spin-polarized carrier pairs. Typically, the injection of carriers occurs with the application of an electric field, whereas spin polarization can be achieved using an applied magnetic field or polarized ferromagnetic contacts.
View Article and Find Full Text PDFSolution-processable two-dimensional (2D) organic-inorganic hybrid perovskite (OIHP) quantum wells naturally self-assemble through weak van der Waals forces. In this study, we investigate the structural and optoelectronic properties of 2D-layered butylammonium (CHNH, BA) methylammonium (CHNH, MA) lead iodide, (BA)(MA)PbI quantum wells with varying from 1 to 4. Through conventional structural characterization, (BA)(MA)PbI thin films showcase high-quality phase () purity.
View Article and Find Full Text PDFWe demonstrate theoretically that non-chiral perovskite layers can exhibit circular dichroism (CD) in the absence of a magnetic field and without chiral activation by chiral molecules. The effect is shown to be due to splitting of helical excitonic states which can form in structures of orthorhombic or lower symmetry that exhibit Rashba spin effects. The selective coupling of these helical exciton states to helical light is shown to give rise to circular dichroism.
View Article and Find Full Text PDFChiral-induced spin selectivity (CISS) occurs when the chirality of the transporting medium selects one of the two spin ½ states to transport through the media while blocking the other. Monolayers of chiral organic molecules demonstrate CISS but are limited in their efficiency and utility by the requirement of a monolayer to preserve the spin selectivity. We demonstrate CISS in a system that integrates an inorganic framework with a chiral organic sublattice inducing chirality to the hybrid system.
View Article and Find Full Text PDFThe hybrid organic-inorganic perovskites (HOIPs) form a new class of semiconductors which show promising optoelectronic device applications. Remarkably, the optoelectronic properties of HOIP are tunable by changing the chemical components of their building blocks. Recently, the HOIP spintronic properties and their applications in spintronic devices have attracted substantial interest.
View Article and Find Full Text PDFThree dimensional (3D) topological insulators (TIs) are an important class of materials with applications in electronics, spintronics and quantum computing. With the recent development of truly bulk insulating 3D TIs, it has become possible to realize surface dominated phenomena in electrical transport measurements e.g.
View Article and Find Full Text PDFWe report transient photoinduced absorption (t-PA) and magnetic field ( B)-dependent t-PA (t-MPA( B)) in a pristine low band gap π-conjugated copolymer composed of donor and acceptor moieties, namely, the poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thi-eno[3,4- b]thiophenediyl]]) (or PTB7) used in photovoltaic applications. Unlike traditional π-conjugated polymers in which the primary photoexcitations are singlet excitons (SE), in pristine PTB7 we find at short times coexistence of two primary photoexcitation species, namely, SE and triplet-triplet (TT) pair. Both species are photogenerated directly from the ground state and are spin-correlated.
View Article and Find Full Text PDFThe ability to control the response of metamaterial structures can facilitate the development of new terahertz devices, with applications in spectroscopy and communications. We demonstrate ultrafast frequency-agile terahertz metamaterial devices that enable such a capability, in which multiple perovskites can be patterned in each unit cell with micrometer-scale precision. To accomplish this, we developed a fabrication technique that shields already deposited perovskites from organic solvents, allowing for multiple perovskites to be patterned in close proximity.
View Article and Find Full Text PDFPhotovoltaic perovskites, most notably methylammonium lead triiodide, (NH Me)PbI , have recently attracted considerable attention, and based upon the modified "Goldschmidt" as well as a "revised" tolerance factors, hydrazinium should be able to occupy the same cation site as methylammonium, and form a cubic unit cell. The reaction of N H I with PbI in dimethylformamide results in three types of yellow crystals; hexagonal, needle-like, and rod-like, the structures of which were determined at 100 K. The hexagonal (P6 /m: a=10.
View Article and Find Full Text PDFTwo-dimensional (2D) organic-inorganic hybrid perovskite multiple quantum wells that consist of multilayers of alternate organic and inorganic layers exhibit large exciton binding energies of order of 0.3 eV due to the dielectric confinement between the inorganic and organic layers. We have investigated the exciton characteristics of 2D butylammonium lead iodide, (CHNH)PbI using photoluminescence and UV-vis absorption in the temperature range of 10 K to 300 K, and electroabsorption spectroscopy.
View Article and Find Full Text PDFTwo-dimensional (2D) layered hybrid organic-inorganic halide perovskite semiconductors form natural "multiple quantum wells" that have strong spin-orbit coupling due to the heavy elements in their building blocks. This may lead to "Rashba splitting" close to the extrema in the electron bands. We have used a plethora of ultrafast transient, nonlinear optical spectroscopies and theoretical calculations to study the primary (excitons) and long-lived (free carriers) photoexcitations in thin films of 2D perovskite, namely, (CHCHNH)PbI.
View Article and Find Full Text PDFOrgano-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CHNHPbI-based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2016
We studied steady state and transient photocurrents in thin film and single-crystal devices of MAPbBr, a prototype organic-inorganic hybrid perovskite. We found that the devices' capacitance is abnormally large, which originates from accumulation of large densities of Pb and Br in the active perovskite layer. Under applied bias, these ions are driven toward the opposite electrodes leading to space-charge fields close to the metal/perovskite interfaces.
View Article and Find Full Text PDFWe present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers.
View Article and Find Full Text PDFWe measured the picoseconds (ps) transient dynamics of photoexcitations in blends of regio-regular poly(3-hexyl-thiophene) (RR-P3HT) (donors-D) and fullerene (PCBM) (acceptor-A) in an unprecedented broad spectral range of 0.25 to 2.5 eV.
View Article and Find Full Text PDF