, a Brassicaceae family crop, is used for fodder, human food, and biofuels. Its relatively high resistance to abiotic and biotic stresses, as well as being a climate-resilient oilseed crop, has contributed to its popularity. Camelina's seed yield and oil contents have been improved using various technologies like RNAi and CRISPR/Cas9 genome editing.
View Article and Find Full Text PDFPlant plastids generate signals, including some derived from lipids, that need to be mobilized to effect signaling. We used informatics to discover potential plastid membrane proteins involved in microbial responses in Arabidopsis (Arabidopsis thaliana). Among these are proteins co-regulated with the systemic immunity component AZELAIC ACID INDUCED 1, a hybrid proline-rich protein (HyPRP), and HyPRP superfamily members.
View Article and Find Full Text PDFThe Arabidopsis plastid-localized ALD1 protein acts in the lysine catabolic pathway that produces infection-induced pipecolic acid (Pip), Pip derivatives, and basal non-Pip metabolite(s). ALD1 is indispensable for disease resistance associated with Pseudomonas syringae infections of naïve plants as well as those previously immunized by a local infection, a phenomenon called systemic acquired resistance (SAR). Pseudomonas syringae is known to associate with mesophyll as well as epidermal cells.
View Article and Find Full Text PDFInduction of heat shock proteins (HSPs) in response to heat stress (HS) is indispensable for conferring thermotolerance. Glc, a fundamental signaling and metabolic molecule, provides energy to stressed seedlings to combat stress. The recovery of stressed plants from detrimental HS in response to Glc is largely mediated by HSPs, but the mechanistic basis of this thermotolerance is not well defined.
View Article and Find Full Text PDFG-BOX BINDING FACTOR 1 (GBF1) influences light-regulated seedling development in Arabidopsis, and inhibits CATALASE 2 (CAT2) expression during senescence. CAT2 functions as a scavenger of hydrogen peroxide. The role of GBF1 in the defense response is not known.
View Article and Find Full Text PDFA partly infected plant develops systemic acquired resistance (SAR) and shows heightened resistance during subsequent infections. The infected parts generate certain mobile signals that travel to the distal tissues and help to activate SAR. SAR is associated with epigenetic modifications of several defence-related genes.
View Article and Find Full Text PDFLipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e.
View Article and Find Full Text PDFThe ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections.
View Article and Find Full Text PDFPlants often learn from previous infections to mount higher level of resistance during subsequent infections, a phenomenon referred to as systemic acquired resistance (SAR). During primary infection, mobile signals generated at the infection site subsequently move to the rest of plant to activate SAR. SAR activation is associated with alteration in the nucleosomal composition at the promoters of several defense-related genes.
View Article and Find Full Text PDF