Publications by authors named "Zeeshan Mutahir"

Terminalia arjuna is an evergreen medicinal plant that belongs to the Combretaceae family of flowering plants. The bark of the plant exhibits antiviral, anticancer, hypocholesterolemic, antioxidant and antimicrobial properties. In this study, composition antibacterial activity, antioxidant activity and cytotoxicity of bark oil of Terminalia arjuna(Roxb.

View Article and Find Full Text PDF

The periosteum, a vascularized tissue membrane, is essential in bone regeneration following fractures and bone loss due to some other reasons, yet there exist several research gaps concerning its regeneration. These gaps encompass reduced cellular proliferation and bioactivity, potential toxicity, heightened stiffness of scaffold materials, unfavorable porosity, expensive materials and procedures, and suboptimal survivability or inappropriate degradation rates of the implanted materials. This research used an interdisciplinary approach by forming a new material fabricated through electrospinning for the proposed application as a layer-by-layer tissue-engineered periosteum (TEP).

View Article and Find Full Text PDF

Objective: Gene-environment interactions might play a significant role in the development of bipolar disorder (BD). The objective of the current study was to investigate the association between tumor necrosis factor (TNF)-α -308 G/A polymorphism and BD and conduct a bioinformatics analysis of the protein-protein network of TNF-α. Gene-environment interactions and the relationship between stressful life events (SLEs) and substance abuse with TNF genotypes and other characteristics were analyzed.

View Article and Find Full Text PDF

A series of 1,3,4-oxadiazole-2-thiol derivatives bearing various alkyl or aryl moieties were designed, synthesized, and characterized using modern spectroscopic methods to yield 17 compounds (6a-6q) that were screened for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes in the search for 'lead' compounds for Alzheimer's disease treatment (AD). The compounds 6q, 6p, 6k, 6o, and 6l showed inhibitory capability against AChE and BChE, with IC values ranging from 11.73±0.

View Article and Find Full Text PDF

KDM5A over-expression mediates cancer cell proliferation and promotes resistance toward chemotherapy through epigenetic modifications. As its complete mechanism of action is still unknown, there is no KDM5A specific drug available at clinical level. In the current study, lead compounds for KDM5A were determined through pharmacophore modeling and high-throughput virtual screening from Asinex libraries containing 0.

View Article and Find Full Text PDF

The future success of physiologically relevant three-dimensional (3D) cell/tissue models is dependent on the development of functional biomaterials, which can provide a well-defined 3D environment instructing cellular behavior. To establish a platform to produce tailored hydrogels, we conjugated avidin (Avd) to anionic nanofibrillar cellulose (aNFC) and demonstrated the use of the resulting Avd-NFC hydrogel for 3D cell culture, where Avd-NFC allows easy functionalization biotinylated molecules. Avidin was successfully conjugated to nanocellulose and remained functional, as demonstrated by electrophoresis and titration with fluorescent biotin.

View Article and Find Full Text PDF

Breast cancer (BC) is the foremost cause of cancer related deaths in women globally. Currently there is a scarcity of reliable biomarkers for its early stage diagnosis and theranostics monitoring. Altered DNA methylation patterns leading to the silencing of tumor suppressor genes are considered as an important mechanism underlying tumor development and progression in various cancer types, including BC.

View Article and Find Full Text PDF

Extracellular signal-regulated kinase 5 (ERK5) is now considered a key regulator of breast cancer cell proliferation, migration and invasion. It is also implicated in growth factor induced anti-apoptotic signaling. But its contribution to adhesion-induced survival signaling is not clear.

View Article and Find Full Text PDF

A recombinant deoxyribonucleoside kinase from Drosophila melanogaster with a deletion of the last 20 amino acid residues (named DmdNKΔC20) was hypothesized as a potential therapeutic tool for gene therapy due to its broad substrate specificity and better catalytic efficiency towards nucleosides and nucleoside analogs. This study was designed to evaluate the effect of DmdNKΔC20 for sensitizing human cancer cell lines to gemcitabine and to further investigate its role in reversal of acquired drug resistance in gemcitabine-resistant cancer cell line. The DmdNKΔC20 gene was delivered to three different cancer cell lines, including breast, colon and liver cancer cells, using lipid-mediated transfection reagent.

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) contribute to enzymatic conversion of recalcitrant polysaccharides such as chitin and cellulose and may also play a role in bacterial infections. Some LPMOs are multimodular, the implications of which remain only partly understood. We have studied the properties of a tetra-modular LPMO from the food poisoning bacterium Bacillus cereus (named BcLPMO10A).

View Article and Find Full Text PDF

The success of a dental implant relies on the presence of an optimal alveolar ridge. The aim of this study was to fabricate HPMC crosslinked chitosan based scaffolds for alveolar bone repair. Our results indicated that HPMC crosslinked CH/BG foams presented better morphological structure (132-90.

View Article and Find Full Text PDF

Alveolar bone loss is associated with infections and its augmentation is a pre-requisite for the success of dental implants. In present study, we aim to develop and evaluate novel freeze dried doxycycline loaded chitosan (CS)/hydroxyapatite (HA) spongy scaffolds where hydroxypropylmethyl cellulose (HPMC) was added as a crosslinker. Scaffolds displayed compressive strength of 14MPa/cm and 0.

View Article and Find Full Text PDF

Decades of cancer research have unraveled genetic, epigenetic and molecular pathways leading to plausible therapeutic targets; many of which hold great promise in improving clinical outcomes. Metastatic tumors become evident early on and are one of the major causes of cancer-related fatalities worldwide. This review depicts the sequential events of cancer metastasis.

View Article and Find Full Text PDF

Deoxyribonucleoside kinases (dNKs) salvage deoxyribonucleosides (dNs) and catalyze the rate limiting step of this salvage pathway by converting dNs into corresponding monophosphate forms. These enzymes serve as an excellent model to study duplicated genes and their evolutionary history. So far, among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties.

View Article and Find Full Text PDF

Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides into the corresponding 5'-monophosphate deoxyribonucleosides to supply the cell with nucleic acid precursors. In mitochondrial fractions of the model plant Arabidopsis thaliana, we detected deoxyadenosine and thymidine kinase activities, while the cytosol fraction contained six-fold lower activity and chloroplasts contained no measurable activities. In addition, a mitochondrial fraction isolated from the potato Solanum tuberosum contained thymidine kinase and deoxyadenosine kinase activities.

View Article and Find Full Text PDF

Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK gene family in metazoa. Each enzyme class (deoxycytidine, deoxyguanosine, and deoxythymidine kinases, as well as the multisubstrate dNKs) falls into a monophyletic clade.

View Article and Find Full Text PDF

Thymidine kinase 1 (TK1) provides a crucial precursor, deoxythymidine monophosphate, for nucleic acid synthesis, and the activity of TK1 increases by up to 200-fold during the S-phase of cell division in humans. An important part of the regulatory checkpoints is the ATP and enzyme concentration-dependent transition of TK1 from a dimer with low catalytic efficiency to a tetramer with high catalytic efficiency. This regulatory fine-tuning serves as an additional control to provide a balanced pool of nucleic acid precursors in the cell.

View Article and Find Full Text PDF