Publications by authors named "Zeeshan A Rana"

Investigating aircraft flight dynamics often requires dynamic wind tunnel testing. This paper proposes a non-contact, off-board instrumentation method using vision-based techniques. The method utilises a sequential process of Harris corner detection, Kanade-Lucas-Tomasi tracking, and quaternions to identify the Euler angles from a pair of cameras, one with a side view and the other with a top view.

View Article and Find Full Text PDF

Predictive maintenance holds a crucial role in various industries such as the automotive, aviation and factory automation industries when it comes to expensive engine upkeep. Predicting engine maintenance intervals is vital for devising effective business management strategies, enhancing occupational safety and optimising efficiency. To achieve predictive maintenance, engine sensor data are harnessed to assess the wear and tear of engines.

View Article and Find Full Text PDF

Supervised deep learning models can be optimised by applying regularisation techniques to reduce overfitting, which can prove difficult when fine tuning the associated hyperparameters. Not all hyperparameters are equal, and understanding the effect each hyperparameter and regularisation technique has on the performance of a given model is of paramount importance in research. We present the first comprehensive, large-scale ablation study for an encoder-only transformer to model sign language using the improved Word-level American Sign Language dataset (WLASL-alt) and human pose estimation keypoint data, with a view to put constraints on the potential to optimise the task.

View Article and Find Full Text PDF

: The planetary rover is an essential platform for planetary exploration. Visual semantic segmentation is significant in the localization, perception, and path planning of the rover autonomy. Recent advances in computer vision and artificial intelligence brought about new opportunities.

View Article and Find Full Text PDF

We present a convolutional neural network (CNN) that identifies drone models in real-life videos. The neural network is trained on synthetic images and tested on a real-life dataset of drone videos. To create the training and validation datasets, we show a method of generating synthetic drone images.

View Article and Find Full Text PDF

Sky and ground are two essential semantic components in computer vision, robotics, and remote sensing. The sky and ground segmentation has become increasingly popular. This research proposes a sky and ground segmentation framework for the rover navigation visions by adopting weak supervision and transfer learning technologies.

View Article and Find Full Text PDF

The problem of classifying gas-liquid two-phase flow regimes from ultrasonic signals is considered. A new method, belt-shaped features (BSFs), is proposed for performing feature extraction on the preprocessed data. A convolutional neural network (CNN/ConvNet)-based classifier is then applied to categorize into one of the four flow regimes: 1) annular; 2) churn; 3) slug; or 4) bubbly.

View Article and Find Full Text PDF