Mechanical properties in different atmospheres, including oxygen, vacuum, air and H, of high Nb containing TiAl alloys with the compositions of Ti-45Al-8.5Nb-(0.2W, 0.
View Article and Find Full Text PDFOvarian cancer (OC) is a lethal disease occurring in women worldwide. Due to the lack of obvious clinical symptoms and sensitivity biomarkers, OC patients are often diagnosed in advanced stages and suffer a poor prognosis. Circulating tumor cells (CTCs), released from tumor sites into the peripheral blood, have been recognized as promising biomarkers in cancer prognosis, treatment monitoring, and metastasis diagnosis.
View Article and Find Full Text PDFJ Mol Med (Berl)
February 2022
Colorectal cancer (CRC) is one of the main causes of cancer-related morbidity and mortality across the globe. Although serum biomarkers such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA-199) have been prevalently used as biomarkers in various cancers, they are neither very sensitive nor highly specific. Repeated tissue biopsies at different times of the disease can be uncomfortable for cancer patients.
View Article and Find Full Text PDFJ Mater Chem B
September 2021
Photodynamic/photothermal therapy (PDT/PTT) has become a research focus of cancer treatment due to the non-invasiveness, spatio-temporal controllability, and effectiveness of repeated treatment. Here, Au@MOF core-shell hybrids were designed and constructed by the layer-by-layer method, and the thickness of the MOF shell can be adjusted by controlling the coordination reaction between the layers. Au nanorod cores mainly produce the PTT effect due to their strong absorbance at 650 nm.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2021
The detection and analysis of circulating tumor cells (CTCs) from cancer patients' blood samples present a powerful means to monitor cancer progression. In this work, an antifouling nanostructure substrate made of hydrogel nanoparticles was fabricated for an effective capture of CTCs from the blood samples. The hydrogel nanoparticles were synthesized by zwitterionic sulfobetaine methacrylate (SBMA), methacrylic acid (MAA) and N, N'-methylene bisacrylamide (MBA) through a simple polymerization.
View Article and Find Full Text PDFThe isolation of specific and sensitive circulating tumor cells (CTCs) is significant for applying them in cancer diagnosis and monitoring. In this work, dual aptamer-modified poly(lactic-co-glycolic acid) (PLGA) nanofiber-based microfluidic devices were fabricated to achieve the highly efficient capture and specific release of epithelial and mesenchymal CTCs of ovarian cancer. Dual aptamer targeting epithelial cell adhesion molecules (EpCAM) and N-cadherin proteins to improve the capture sensitivity, bovine serum albumin (BSA) to guarantee the capture purity and the nanofibers to increase the capture efficiency via synchronously and effectively capturing the epithelial and mesenchymal CTCs with good capture specificity and sensitivity from blood samples were used.
View Article and Find Full Text PDFThe majority of current methods of isolating circulating tumor cells (CTCs) rely on a biomarker. However, the isolation efficiency may be compromised due to the heterogeneity of CTCs. In this work, a simple and broad-spectrum method is established to efficiently isolate the heterogeneous CTCs from patient blood samples using tannic acid (TA)-functionalized magnetic nanoparticles (MNPs).
View Article and Find Full Text PDFFor reliable downstream molecular analysis, it is crucially important to recover circulating tumor cells (CTCs) from clinical blood samples with high purity and viability. Herein, magnetic nanoparticles coated with an antifouling hydrogel layer based on the polymerization method were developed to realize cell-friendly and efficient CTC capture and recovery. Particularly, the hydrogel layer was fabricated by zwitterionic sulfobetaine methacrylate (SBMA) and methacrylic acid (MAA) cross-linked with N,N-bis(acryloyl)cystamine (BACy), which could not only resist nonspecific adhesion but also gently recover the captured cells by glutathione (GSH) responsiveness.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2020
The control of massive bleeding and its related wound infection is the main challenge for both military and civilian trauma centres. In this study, a cationic superabsorbent hydrogel coordinated by mesoporous silica (CSH-MS) was synthesized by free-radical polymerization for both haemostasis and antibacterial use. The as-prepared CSH-MS has a rough surface, and its water absorption is approximately 5000%.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2020
Circulating tumor cells (CTCs) are an important part of liquid biopsy as they represent a potentially rich source of information for cancer diagnosis, monitoring, prognosis, and treatment guidance. It has been proved that the nanotopography interaction between cells and the surface of CTC detection platforms can significantly improve the capture efficiency of CTCs, whereas many mature nanostructure substrates have been developed based on chemistry materials. In this work, a natural biointerface with unique biological properties is fabricated for efficient isolation and nondestructive release of CTCs from blood samples using the cancer cell membranes.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2020
Herein, we developed an inexpensive titanium dioxide (TiO) nanofiber substrate for efficient and selective capture of circulating tumor cells (CTCs) from mimic patients' samples. The TiO nanofiber substrates were fabricated by electrospinning in combination with the calcination process. The surface of nanofiber substrates was modified with the anti-adhesion molecule, bovine serum albumin (BSA) and the nucleolin aptamer AS1411, wherein, aptamer AS1411 specifically binds to the nucleolin protein overexpressed on the membrane surface of cancer cells.
View Article and Find Full Text PDFAnalysis of circulating tumor cells (CTCs) can provide significant clinical information for tumors, which has proven to be helpful for cancer diagnosis, prognosis monitoring, treatment efficacy, and personalized therapy. However, CTCs are an extremely rare cell population, which challenges the isolation of CTCs from patient blood. Over the last few decades, many strategies for CTC detection have been developed based on the physical and biological properties of CTCs.
View Article and Find Full Text PDF