Long-term immune evasion by the African trypanosome is achieved through repetitive cycles of surface protein replacement with antigenically distinct versions of the dense Variant Surface Glycoprotein (VSG) coat. Thousands of VSG genes and pseudo-genes exist in the parasite genome that, together with genetic recombination mechanisms, allow for essentially unlimited immune escape from the adaptive immune system of the host. The diversity space of the "VSGnome" at the protein level was thought to be limited to a few related folds whose structures were determined more than 30 years ago.
View Article and Find Full Text PDFDuring infection of mammalian hosts, African trypanosomes thwart immunity using antigenic variation of the dense Variant Surface Glycoprotein (VSG) coat, accessing a large repertoire of several thousand genes and pseudogenes, and switching to antigenically distinct copies. The parasite is transferred to mammalian hosts by the tsetse fly. In the salivary glands of the fly, the pathogen adopts the metacyclic form and expresses a limited repertoire of VSG genes specific to that developmental stage.
View Article and Find Full Text PDFPoorly immunogenic small molecules pose challenges for the production of clinically efficacious vaccines and antibodies. To address this, we generate an immunization platform derived from the immunogenic surface coat of the African trypanosome. Through sortase-based conjugation of the target molecules to the variant surface glycoprotein (VSG) of the trypanosome surface coat, we develop VSG-immunogen array by sortase tagging (VAST).
View Article and Find Full Text PDFThe dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat.
View Article and Find Full Text PDFAfrican trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association.
View Article and Find Full Text PDFSuramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not.
View Article and Find Full Text PDFAim: This paper is a report of a study conducted to explore the competencies - especially deep-rooted personal qualities - of care providers who succeed in making contact and gaining trust with clients who are inclined to avoid the care they need.
Background: Demands, thresholds and fragmentation of services hinder the accessibility of health care, such that some severe mentally ill people do not receive the treatment they need or avoid healthcare services. Methods of establishing contact and gaining trust in mental health care include practical assistance, realistic expectations, establishing long-term goals, empathy and a client-centred and flexible approach.
Proton pumps in the plasma membrane of plants and yeasts maintain the intracellular pH and membrane potential. To gain insight into the molecular mechanisms of proton pumping, we built an atomic homology model of the proton pump based on the 2.6 angstrom x-ray structure of the related Ca2+ pump from rabbit sarcoplasmic reticulum.
View Article and Find Full Text PDFThe molecular mechanisms that evolution has been employing to adapt to environmental temperatures are poorly understood. To gain some further insight into this subject we solved the crystal structure of triosephosphate isomerase (TIM) from the hyperthermophilic bacterium Thermotoga maritima (TmTIM). The enzyme is a tetramer, assembled as a dimer of dimers, suggesting that the tetrameric wild-type phosphoglycerate kinase PGK-TIM fusion protein consists of a core of two TIM dimers covalently linked to 4 PGK units.
View Article and Find Full Text PDFThe dimeric enzyme triosephosphate isomerase (TIM) has a very tight and rigid dimer interface. At this interface a critical hydrogen bond is formed between the main chain oxygen atom of the catalytic residue Lys13 and the completely buried side chain of Gln65 (of the same subunit). The sequence of Leishmania mexicana TIM, closely related to Trypanosoma brucei TIM (68% sequence identity), shows that this highly conserved glutamine has been replaced by a glutamate.
View Article and Find Full Text PDFThe purification and characterization of triose-phosphate isomerase from the psychrophilic bacterium Vibrio marinus (vTIM) is described. Crystal structures of the vTIM-sulfate complex and the vTIM-2-phosphoglycolate complex (at a 2.7-A resolution) are also presented.
View Article and Find Full Text PDFThe dimeric, peroxisomal 3-ketoacyl-CoA thiolase catalyses the conversion of 3-ketoacyl-CoA into acyl-CoA, which is shorter by two carbon atoms. This reaction is the last step of the beta-oxidation pathway. The crystal structure of unliganded peroxisomal thiolase of the yeast Saccharomyces cerevisiae has been refined at 1.
View Article and Find Full Text PDFProtein engineering experiments have been carried out with loop-1 of monomeric triosephosphate isomerase (monoTIM). Loop-1 of monoTIM is disordered in every crystal structure of liganded monoTIM, but in the wild-type TIM it is a very rigid dimer interface loop. This loop connects the first beta-strand with the first alpha-helix of the TIM-barrel scaffold.
View Article and Find Full Text PDFThe crystal structure of rat liver mitochondrial enoyl-coenzyme A (CoA) hydratase complexed with the potent inhibitor acetoacetyl-CoA has been refined at 2.5 angstroms resolution. This enzyme catalyses the reversible addition of water to alpha,beta-unsaturated enoyl-CoA thioesters, with nearly diffusion-controlled reaction rates for the best substrates.
View Article and Find Full Text PDFBackground: Wild-type triosephosphate isomerase (TIM) is a very stable dimeric enzyme. This dimer can be converted into a stable monomeric protein (monoTIM) by replacing the 15-residue interface loop (loop-3) by a shorter, 8-residue, loop. The crystal structure of monoTIM shows that two active-site loops (loop-1 and loop-4), which are at the dimer interface in wild-type TIM, have acquired rather different structural properties.
View Article and Find Full Text PDFWild-type trypanosomal triosephosphate isomerase (wtTIM) is a very tight dimer. The interface residue His-47 of wtTIM has been mutated into an asparagine. Ultracentrifugation data show that this variant (H47N) only dimerises at protein concentrations above 3 mg/ml.
View Article and Find Full Text PDFBackground: The peroxisomal enzyme 3-ketoacyl-coenzyme A thiolase of the yeast Saccharomyces cerevisiae is a homodimer with 417 residues per subunit. It is synthesized in the cytosol and subsequently imported into the peroxisome where it catalyzes the last step of the beta-oxidation pathway. We have determined the structure of this thiolase in order to study the reaction mechanism, quaternary associations and intracellular targeting of thiolases generally, and to understand the structural basis of genetic disorders associated with human thiolases.
View Article and Find Full Text PDFThe crystal structure of a hybrid Escherichia coli triosephosphate isomerase (TIM) has been determined at 2.8 A resolution. The hybrid TIM (ETIM8CHI) was constructed by replacing the eighth beta alpha-unit of E.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
July 1994
A convenient method for screening crystallization conditions using an automated fast-screen protocol has been implemented and tested on an enoyl-CoA hydratase. The crystallization solutions for the initial screening and subsequent optimizations are prepared using a crystallization robot. Enoyl-CoA hydratase (E.
View Article and Find Full Text PDFTriosephosphate isomerase (TIM) is a dimeric enzyme consisting of 2 identical subunits. Trypanosomal TIM can be crystallized in 4 different spacegroups: P2(1)2(1)2(1), C2(big cell), C2(small cell), and P1. The P1 crystal form only grows in the presence of 1.
View Article and Find Full Text PDFSH3 domains are modules occurring in diverse proteins, ranging from cytoskeletal proteins to signaling proteins, such as tyrosine kinases. The crystal structure of the SH3 domain of Csk (c-Src specific tyrosine kinase) has been refined at a resolution of 2.5 A, with an R-factor of 22.
View Article and Find Full Text PDFBackground: The triosephosphate isomerase (TIM) fold is found in several different classes of enzymes, most of which are oligomers; TIM itself always functions as a very tight dimer. It has recently been shown that a monomeric form of TIM ('monoTIM') can be constructed by replacing a 15-residue interface loop, loop-3, with an eight-residue fragment; modelling suggests that this should result in a short strain-free turn, resulting in the subsequent helix, helix-A3, having an additional turn at its amino terminus.
Results: The crystal structure of monoTIM shows that it retains the characteristic TIM-barrel (betaalpha)8-fold and that the new loop has a structure very close to that predicted.
Biochem Biophys Res Commun
September 1993
Hydrophobic cyclic hexapeptides have been reported to selectively inhibit glycosomal triosephosphate isomerase from Trypanosoma brucei (Kuntz et al, 1992, Eur. J. Biochem.
View Article and Find Full Text PDFThe structure of trypanosomal triosephosphate isomerase (TIM) has been solved at a resolution of 2.1A in a new crystal form grown at pH 8.8 from PEG6000.
View Article and Find Full Text PDFRehabilitation (Stuttg)
August 1993
In this contribution the issue of professionalization is being discussed, mainly tailored to the field of vocational rehabilitation in Dutch Mental Health. Presented is an overview of existing routines frequently used in the methodical actions of industrial therapists and occupational therapists. Several important methodical suggestions for the concretization of a renewed concept of vocational rehabilitation were formulated.
View Article and Find Full Text PDF